Open Access

DOI:10.3724/zdxbyxb-2023-0485

·专题报道 ·

微核激活 cGAS-STING 信号通路的机制 及其肿瘤免疫功能

沈琴1,徐平龙^{1,2,3,4},梅陈^{1,3}

1. 浙江大学生命科学研究院,浙江杭州 310058

 浙江大学生命系统稳态与保护教育部重点实验室 浙江省癌症分子细胞生物学 重点实验室,浙江 杭州 310058

3. 浙江大学杭州国际科创中心智能医药研究所,浙江杭州 311200

4. 浙江大学癌症研究院,浙江杭州 310058

「摘要] 环鸟苷酸-腺苷酸合成酶(cGAS)-干扰素基因刺激因子(STING)信号 通路可监测微生物入侵和组织损伤等生理病理异常状态,是天然免疫系统的重要 组成之一。作为 DNA 感受器, cGAS 主要识别异常定位于细胞质的双链 DNA (dsDNA),通过催化合成二级信使环鸟苷酸-腺苷酸启动由STING介导的 [型干 扰素和炎症信号通路。微核是有丝分裂后期染色体错误分离的产物,也是细胞质 dsDNA 的重要来源之一。作为一类不稳定的亚细胞器结构, 微核核膜倾向于不可 逆的破裂,导致微核基因组DNA暴露在细胞质中。暴露的微核基因组DNA招募 并激活 cGAS-STING 信号通路,诱导 STING 下游信号通路活化,包括 [型干扰素信 号通路和经典核因子 κB(NF-κB)信号通路,导致细胞衰老、细胞凋亡和细胞自噬 的发生,从而介导免疫系统的活化以清除肿瘤细胞,或者直接诱导肿瘤细胞死亡。 另外,STING持续激活诱导的内质网应激,以及慢性 [型干扰素信号通路和非经 典NF-κB信号通路的活化,营造了免疫抑制的肿瘤微环境,导致肿瘤细胞免疫逃 逸,促进肿瘤转移和肿瘤细胞存活。因此,在肿瘤的发生发展和治疗过程中,活化 的cGAS-STING免疫通路扮演着抑制或促进肿瘤的双重作用。本文阐述了肿瘤微 环境中微核诱导 cGAS-STING 免疫通路活化的机制研究进展,探讨了其在肿瘤发 生发展和治疗中的潜在重要作用。

[关键词] 环鸟苷酸-腺苷酸合成酶-干扰素基因刺激因子信号通路;染色体不稳 定;微核;肿瘤免疫;综述 [中图分类号] R392 [文献标志码] A

shenqin@zju.edu.cn; https://orcid.org/0009-0001-7401-9359

肿瘤免疫

收稿日期(Received):2023-10-08 接受日期(Accepted):2023-12-12 网络预发表日期(Online):2024-01-26 基金项目(Funding):国家自然科学基金(31725017,31830052);国家重点研发计划(2021YFA1301401) 第一作者(First author):沈 琴,博士研究生,主要从事分子细胞生物学基础、肿瘤生物学和肿瘤免疫研究;E-mail:

通信作者(Corresponding author):梅 陈,博士,主要从事分子细胞生物学基础、染色体不稳定和肿瘤免疫研究; E-mail:meichen924559@163.com;https://orcid.org/0009-0005-5959-4223. 徐平龙,教授,博士生导师,主要从事分子细胞生物学和肿瘤学基础研究;E-mail:xupl@zju.edu.cn;https://orcid.org/0000-0001-7726-5443

Role of micronucleus-activated cGAS-STING signaling in antitumor immunity

SHEN Qin¹, XU Pinglong^{1,2,3,4}, MEI Chen^{1,3} (1. Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; 2. Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China; 3. Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; 4. Cancer Center, Zhejiang University, Hangzhou 310058, China)

Corresponding authors: MEI Chen, E-mail: meichen924559@163.com, https://orcid.org/ 0009-0005-5959-4223; XU Pinglong, E-mail: xupl@zju.edu.cn, https://orcid.org/0000-0001-7726-5443

[Abstract] Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling is a significant component of the innate immune system and functions as a vital sentinel mechanism to monitor cellular and tissue aberrations in microbial invasion and organ injury. cGAS, a cytosolic DNA sensor, is specialized in recognizing abnormally localized cytoplasmic doublestranded DNA (dsDNA) and catalyzes the formation of a second messenger cyclic-GMP-AMP (cGAMP), which initiates a cascade of type I interferon and inflammatory responses mediated by STING. Micronucleus, a byproduct of chromosomal missegregation during anaphase, is also a significant contributor to cytoplasmic dsDNA. These unstable subcellular structures are susceptible to irreversible nuclear envelope rupture, exposing genomic dsDNA to the cytoplasm, which potently recruits cGAS and activates STING-mediated innate immune signaling and its downstream activities, including type I interferon and classical nuclear factor- KB (NF-KB) signaling pathways lead to senescence, apoptosis, autophagy activating anti-cancer immunity or directly killing tumor cells. However, sustained STING activation-induced endoplasmic reticulum stress, activated chronic type I interferon and nonclassical NF-KB signaling pathways remodel immunosuppressive tumor microenvironment, leading to immune evasion and facilitating tumor metastasis. Therefore, activated cGAS-STING signaling plays a dual role of suppressing or facilitating tumor growth in tumorigenesis and therapy. This review elaborates on research advances in mechanisms of micronucleus inducing activation of cGAS-STING signaling and its implications in tumorigenesis and therapeutic strategies of malignant tumors.

[**Key words**] cGAS-STING signaling; Chromosomal instability; Micronucleus; Tumor immunology; Review

[J Zhejiang Univ (Med Sci), 2024, 53(1): 25-34.]

[缩略语] 环鸟苷酸-腺苷酸合成酶(cyclic guanosine monophosphate-adenosine monophosphate synthase, cGAS);干扰素基因刺激因子(stimulator of interferon genes, STING);线粒体 DNA(mitochondrial DNA, mtDNA);双链 DNA(double-stranded DNA, dsDNA);损伤相关分子模式(damage associated molecular pattern, DAMP);3'-核酸

修复外切酶(three-prime repair exonuclease, TREX);环鸟苷酸-腺苷酸(cyclic guanosine monophosphate-adenosine monophosphate, cGAMP);NOD样受体热蛋白结构域相关蛋白(NOD-like receptor thermal protein domain associated protein, NLRP); 干扰素调节因子(interferon regulatory factor, IRF);核因子 κ B(nuclear factor- κ B, NF- κ B);衰老相关分泌表型(senescence associated secretory phenotype, SASP);视网膜母细胞瘤蛋白(retinoblastoma protein, RB);人表皮生长因子受体(human epidermal growth factor receptor, HER);信号转导及转录活化因子(signal transducer and activator of transcription, STAT);线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein, MAVS);多腺苷二磷酸核糖聚合酶[poly(ADP-ribose) polymerase, PARP];拓扑异构酶 II α (topoisomerase II α , TOP2A)

染色体不稳定是指细胞在持续有丝分裂过 程中发生染色体的错误分离,导致染色体结构或 数目异常的现象,被视为人类肿瘤的重要标志。 60%~80%的人类肿瘤细胞存在染色体不稳定[1]。 染色体不稳定与肿瘤分期呈正相关,在复发以及 转移的肿瘤灶中高频率发生[24],提示其与肿瘤的 转移、治疗耐药性和免疫逃逸等密切相关。理解 染色体不稳定如何调控肿瘤转移、治疗耐药性以 及免疫逃逸的分子机制,对于深入理解肿瘤的发 生发展以及发现肿瘤新的治疗靶点均具有重要意 义。近年研究发现,染色体不稳定产生的微核在 破裂后,其微核基因组DNA在细胞质中暴露,进而 被天然免疫系统中的 cGAS-STING 信号通路所识 别[5]。这一发现将染色体不稳定与免疫系统的活 化联系在一起,为我们理解染色体不稳定提供了 一个全新的视角。值得注意的是, cGAS-STING信 号通路在肿瘤细胞中活化后的功能并不是单一 的,具有多样性和复杂性。本综述将系统探讨微 核的形成、破裂及其被 cGAS-STING 信号通路所 识别的分子机制,以及微核活化的 cGAS-STING 信号通路在肿瘤发生中的功能。这对于靶向微 核和 cGAS-STING 信号通路抗肿瘤药物的研发和 临床应用具有重要指导意义。

1 cGAS-STING 信号通路

1.1 cGAS-STING信号通路的活化

在真核细胞中,为确保生命活动的正常进行,DNA作为遗传物质受到严格的区域化调控,包括包裹在线粒体中的mtDNA,以及细胞核中的基因组 DNA。因此,任何出现在细胞质中的dsDNA,包括来源于外源感染的微生物 DNA、内源泄露的 mtDNA、逆转录元件异常活化产生的

dsDNA以及微核破裂暴露的基因组 DNA,均会被 宿主视为DAMP。DNA感受器cGAS负责识别上 述异常的dsDNA。cGAS与dsDNA结合后形成二 聚化结构,线性聚集在dsDNA上并发挥活性^[6]。 cGAS的活性高度依赖于其氨基端的无规则序列 与dsDNA的相互作用,这种相互作用通过液-液 相分离的方式发生^[7],而Trex1会抑制 cGAS 与 dsDNA形成液-液相分离,进而抑制 cGAS 的活 性^[8]。在分裂间期,cGAS主要定位于细胞核内, 这可能是因为当细胞进入有丝分裂期,细胞核膜 解聚,染色体暴露在细胞质中,会诱导cGAS在染 色体上富集。当细胞进入有丝分裂末期,新的核 膜再次形成,从而cGAS被包裹限制在细胞核中。 然而,当异常dsDNA 在细胞质中积累时,cGAS会 经核孔复合体再次出核^[9],其具体分子机制尚未 完全明确。分裂间期以及有丝分裂期结合在染 色体上的 cGAS 为何没有激活,这是 cGAS 活性研 究的重要问题。目前,多个研究已经证实,染色 质组成的最小单位核小体与 cGAS 的结合能力远 强于裸露 dsDNA 与 cGAS 的结合,因此核小体会 竞争性与 cGAS 结合,从而抑制 cGAS 活化^[10-16]。 活化的cGAS利用腺苷三磷酸和鸟苷三磷酸生成 第二信使 cGAMP, cGAMP 进而与内质网跨膜蛋 白STING结合,诱导其蛋白构象改变和活化,激 活 PERK-EIF2 α 信号通路抑制翻译^[17]。同时, STING可作为质子通道蛋白诱导微管相关蛋白轻 链 3B 的脂化和 NLRP3 炎症小体的活化^[18]。此 外,STING经膜泡运输^[19]转运至内质网-高尔基 体中间体,再转运至高尔基体,在高尔基体上经 棕榈酰化[20]和硫酸化糖胺聚糖修饰[21],招募活化 下游核心激酶TANK结合激酶1,继而活化转录 因子IRF3,介导 I 型干扰素信号通路的活化,同

时 STING 也会协助经典/非经典 NF-κB 信号通路 的激活。最终 STING 会被转运至溶酶体诱导凋 亡发生,并在溶酶体中降解,从而中止信号^[19]。 因此,STING 在亚细胞器中的定位对其蛋白活性 和所承担的功能起着决定性的作用。

1.2 cGAS-STING信号通路抑制或促进肿瘤

由cGAS-STING介导的 I型干扰素信号通路 的激活在其抗肿瘤作用中扮演着重要的角色。 在肿瘤微环境中,I型干扰素信号通路介导免疫 细胞如树突状细胞、T淋巴细胞、NK细胞的活化 和招募^[22-27],NF-κB信号通路能够协同 I 型干扰 素信号通路增强NK细胞活性,从而协同抑制肿 瘤的生长^[28]。值得一提的是,在肿瘤微环境中, 除了免疫细胞和肿瘤细胞外,基质细胞中STING 活化诱导的炎症信号通路同样能够重塑免疫微 环境,并以诱导肿瘤细胞坏死的方式直接抑制肿 瘤生长^[29]。最新研究发现,肿瘤细胞中的STING 通过与己糖激酶2的相互作用抑制有氧糖酵解, 促进肿瘤微环境中CD8⁺和CD4⁺T细胞的招募,进 而抑制肿瘤生长^[30]。细胞衰老是正常细胞癌变 过程中的重要阻碍。衰老细胞中cGAS-STING信 号通路的活化一方面介导了 SASP 释放,诱导免 疫细胞浸润,促进肿瘤免疫,清除衰老细胞[31-33]; 另一方面介导了IRF3-RB复合体的形成,阻滞细 胞周期,从而抑制肿瘤细胞的生长(将发表的研 究成果)。而逃逸了衰老命运的细胞在其演化为 肿瘤细胞的进程中仍会遇到其他障碍,如复制危 机。伴随端粒损伤激活的 cGAS-STING 信号通路 以炎症非依赖的方式介导自噬的发生,对进入复 制危机的异常细胞进行清除^[10]。

尽管 cGAS-STING 信号通路具有上述抑制肿 瘤细胞生长和促进肿瘤免疫的功能,但肿瘤细胞 会采取一系列的措施抑制 cGAS-STING 信号通路 的正常活化:如促癌蛋白 HER2 通过招募下游蛋 白激酶 B 与 STING 形成复合物,有效抑制 cGAS-STING 信号通路^[34]; II 型神经纤维瘤中重要的驱 动蛋白 Merlin 的点突变能够通过"功能获得性" 的方式招募 IRF3 形成复合体,经由液-液相分离 的方式抑制 IRF3 人核,从而阻断 STING 下游信号 通路的正常激活^[35]。上述促癌蛋白 HER2 和 Merline 点突变对 STING 活化的抑制均促进肿瘤 细胞生存以及化疗耐药性产生。

近年来有大量研究表明, cGAS-STING 信号

通路还具有促进肿瘤细胞存活、产生抗肿瘤耐药 性以及免疫抑制的功能。cGAS-STING信号通路 的激活引发了非经典NF-κB信号通路活化,进而 释放IL-6来介导STAT3信号通路的活化,从而促 进肿瘤细胞存活以及耐药性产生[36]。活化的非 经典NF-κB信号通路同样能够促进肿瘤转移。 此外,持续的炎症能够诱导免疫抑制的肿瘤微环 境[37]。Cañadas等[38]研究表明,在小细胞肺癌中, 内源逆转录病毒异常活化,激活 MAVS 和 STING 介导的慢性炎症;慢性炎症上调程序性死亡受体 配体1,从而营造免疫抑制的肿瘤微环境。最新 研究发现,STING长期活化能够重塑下游信号通 路,激活内质网应激信号通路,诱导免疫抑制的 肿瘤微环境^[39]。已有研究证实,STING活化能够 促进B细胞中IL-35表达上调,与NK细胞上受体 相结合,抑制NK细胞的增殖及抗肿瘤活性,同样 有助于营造免疫抑制的肿瘤微环境^[40]。肿瘤移 植实验证明,肿瘤细胞能够通过释放 cGAMP激 活肿瘤微环境中T淋巴细胞中的 STING 信号通 路,以 I 型干扰素非依赖的方式高效诱导 T 淋巴 细胞死亡,导致T淋巴细胞耗竭,从而造成免疫逃 逸^[41-42]。此外,非典型NF-κB信号通路或者持续 的 【 型 干 扰 素 信 号 通 路 活 化 能 够 抑 制 树 突 状 细 胞活性,招募免疫抑制髓系细胞,营造免疫抑制 的肿瘤微环境^[43-45]。

2 细胞微核

2.1 细胞微核的形成

有丝分裂末期,因错误分离而滞留在纺锤体 中央区域的整条染色体或染色体片段具有招募 核膜的能力,形成独立于细胞核的包裹染色体的 膜结构称为微核(图1)。微核的形成常常与有丝 分裂的中断和持续的DNA损伤有关,但有研究表 明其在健康组织中也低丰度存在^[46]。此外,微核 的染色体具有倾向性,近核膜分布、体积较大的 异染色质更倾向于形成微核,这些异染色质在S 期复制时表现出滞后性,从而更容易发生DNA复 制缺陷和错误,这种复制的不完整性进一步影响 了染色体的正确折叠和组装,导致纺锤体微管无 法准确捕获和分离姐妹染色单体,最终导致微核 的形成^[47]。

2.2 微核核膜的破裂及修复

不同于细胞核,微核是一种极不稳定的亚细

有丝分裂后期,整条或部分染色体向两极的移动发生 障碍,滞留在纺锤体中央区域伴随着进入有丝分裂末期, 这些染色体招募核膜形成独立于细胞核的包裹染色体的 膜结构.

图1 微核形成示意图 Figure 1 Formation of micronucleus

胞结构,其核膜倾向于不可逆的破裂。在多种细 胞系、肺癌患者和哺乳动物早期胚胎中都观测到 微核破裂的现象[48-51]。在微核核膜破裂前,微核 如同细胞核一般,能够招募核膜结构,包括核孔 复合体,并且能够启动 DNA 转录、DNA 复制和 DNA损伤修复等^[52-54]。然而部分微核核膜由于 缺乏核孔复合体的装配,导致其丧失核功能[55]。 微核核膜破裂后会丢失大量核蛋白,同样导致其 丧失核功能[56],并抑制组蛋白的翻译后修饰[57]。 与此同时,破裂的微核会发生大量的DNA损 伤[56, 58-59],这是因为破裂的微核会迅速启动核膜 修复机制,招募内质网膜到破损的区域,因而导 致黏附在内质网膜上的核酸外切酶 Trex1 在微核 上富集,对微核基因组DNA进行切割,造成大量 DNA末端损伤,随后招募DNA损伤修复复合体进 行修复^[59],最终导致微核基因组DNA产生大量的 突变和重组。关于破裂微核的命运仍存在争议。 一种解释是破裂的微核在细胞质内持续存在,直 至进入下一轮有丝分裂周期^[53,57],在这个过程 中,细胞核膜解聚,微核基因组DNA会重新融到 细胞核基因组DNA中。然而,这一过程可能为肿

瘤基因组导入大量的突变和重 组,引发染色体碎裂^[52, 58, 60]。 这些突变和重组为肿瘤细胞提 供了天然的筛选库,促进肿瘤 的发生发展以及耐药性的产 生。值得一提的是,容纳了微 核基因组 DNA 的细胞在后续 有丝分裂中会倾向于新微核的 形成^[51, 54]。另一种解释是破裂 的微核在细胞质中会逐步碎裂 成染色质片段^[2]。也有认为破裂的微核会以cGAS 依赖的方式发生溶酶体介导的降解^[61]。微核的 破裂过程如图2所示。

与细胞核核膜破裂一样,微核核膜破裂之前 连续的核纤层上会出现间隙[1],核纤层间隙的产 生是核膜破裂的必要条件^[1,62]。过表达核纤层蛋 白B1或B2能够抑制微核的破裂。有丝分裂末期 便可以观测到微核核膜上核纤层间隙的形成,但 微核核膜并不会立刻破裂,微核核膜的破裂一般 高频率地发生在微核形成后的几小时,甚至少部 分微核可以一直保持完整。当前研究表明,决定 微核核膜破裂的主要因素是膜曲率和基于肌动 蛋白的物理挤压,总的来说,较小微核的膜曲率 较大,因此更易破裂[57,63]。有研究表明抑制肌动 蛋白纤维束能够阻碍微核的破裂[56],可见较大微 核的破裂可能需要基于肌动蛋白的物理挤压。 此外,微核中捕获染色体的长度和基因密度是微 核核膜稳定性的关键因素,并决定了微核破裂的 时间;其中19号染色体是人类最小的染色体之 一,也是基因密度最高的染色体,因此捕获了19 号染色体的微核也是最稳定的[64]。细胞核膜发 生破裂时,只需几分钟便会被修复完整[65-67],即使 有少部分破裂会持续几小时但最终也会被修 复[68-70]。然而微核核膜的破裂几乎是不可逆 的[57]。Vietri等[71]发现,微核体积较小,可能导致 其缺乏限制染色质修饰蛋白 CHMP7-LEM 结构域 核膜蛋白2积累的能力,因此介导核膜修复的内 体分选转运复合体Ⅲ复合物过度活化,造成微核 核膜变形,最终诱使微核核膜碎片化。破裂的微 核虽然能够迅速启动核膜修复系统,确保了细胞 核膜的快速精准修复,但微核破裂时失控的核膜 修复机制会引起微核不可逆破裂,最终诱导基因 组染色体碎裂,为基因组稳定带来灾难性后果。

核纤层的不稳定性导致微核核膜的破裂,继而在细胞质中暴露出微核基因组 DNA 和核蛋白,其中暴露的基因组 DNA 能分别诱导染色体碎裂和激活 cGAS-STING 信号通路.cGAS:环鸟苷酸-腺苷酸合成酶;STING:干扰素基因刺激因子.

图2 微核破裂过程示意图

Figure 2 Rupture of micronucleus

3 微核破裂与cGAS-STING信号通路激活的相 关性

染色体错误分离形成的微核,在形成之初仍 是由核膜包裹将染色体隔绝的区域化结构。但 伴随微核核膜破裂,微核基因组DNA区域化结构 消失,导致其暴露在细胞质中[57]。cGAS作为 DNA感受器,能够迅速感知暴露在细胞质中的微 核基因组 DNA,在微核上富集活化,合成第二信 使cGAMP,诱导STING蛋白活化,介导下游炎症 信号通路的激活,包括 I 型干扰素信号通路、经 典/非经典NF-κB信号通路以及SASP^[2, 37, 72-74]。 Härtlova 等^[5]研究表明,过表达核纤层蛋白 B2 阻 止微核破裂能够阻断cGAS-STING介导的炎症信 号通路的活化,证明破裂的微核可激活 cGAS-STING 信号通路。Bakhoum 等^[2]利用染色体示踪 实验证明了破裂微核中的染色质会逐步碎裂成 细胞质 DNA, 这为微核基因组 DNA 能够活化 cGAS提供了直接证据。在微核核膜破裂之初, 微核基因组 DNA 仍保持着由核小体作为最小单 位组装而成的染色质结构,即使cGAS在破裂微 核上富集,其活性仍会被核小体所抑制。但伴随 着微核染色质逐步碎裂成细胞质 DNA, 完整的核 小体结构丧失,这为cGAS活性的释放提供了可 能。此外, Mackenzie 等^[73]对含有微核的核糖核 酸酶H2亚基A缺失的原代成纤维细胞进行了流 式分选以及单细胞测序,首次在单细胞水平证明 了微核的形成与 cGAS-STING 信号通路的激活具 有直接相关性,即只在包含微核的细胞中检测到 cGAS-STING信号通路活化。

4 微核活化的 cGAS-STING 信号通路与肿瘤 免疫

4.1 微核活化的 cGAS-STING 信号通路在肿瘤 发生发展中的作用

Senovilla 等^[74]研究发现,肿瘤细胞复杂的核型能够激活肿瘤细胞自身和T淋巴细胞介导的抗肿瘤免疫系统,抑制肿瘤生长,因此认为染色体不稳定与免疫激活存在直接的相关性。Santaguida 等^[33]发现,染色体不稳定能够导致肿瘤细胞周期阻滞以及衰老的发生,同时经由 cGAS-STING 信号通路活化NK 细胞介导对肿瘤细胞的杀伤。此外,在促癌基因 RAS 驱动的肿瘤细胞中,细胞质

染色质碎片激活的 cGAS-STING 通路会显著促进 免疫系统介导的肿瘤细胞清除^[75]。微核对 cGAS-STING 信号通路的活化将染色体不稳定与肿瘤免 疫微环境的重塑联系起来,这也与早期肿瘤发生 过程中肿瘤细胞复杂的核型与染色体错误分离 从而抑制肿瘤生长结果一致^[76-77]。

然而, cGAS-STING 信号通路的持续激活具 有促进肿瘤的作用。在DNA损伤药物长期涂抹 诱导的小鼠皮肤癌原发瘤模型中,敲除STING会 明显抑制炎症信号以及原发瘤的形成[78]。在三 阴性乳腺癌细胞中,染色体的错误分离可激活 cGAS-STING 信号通路,进而活化非经典 NF-кВ 信号通路,诱导IL-6释放以及活化IL-6/STAT3信 号通路,促进了三阴性乳腺癌细胞的存活和耐药 性的产生[37]。最新研究发现,染色体不稳定造成 的STING 慢性激活会活化内质网应激信号通路, 进而导致肿瘤的免疫逃逸,证明了单次STING信 号通路活化激活的是 I 型干扰素信号通路, 而多 次STING信号通路活化激活的是下游的内质网 应激信号通路和NF-κB信号通路,这为肿瘤细胞 中I型干扰素信号通路的关闭以及STING下游 信号通路的重塑提供了直接证据^[40]。

此外,在人乳腺癌和肺癌细胞中,染色体错 误分离诱导的慢性 cGAS-STING 激活能够通过下 游非典型 NF-κB通路的活化介导肿瘤细胞转移, STING 的缺失、抑制微核的形成和破裂、抑制非典 型 NF-κB转录因子的活性均可以抑制肿瘤细胞 的转移^[2]。但一项最新研究发现,肺腺癌肿瘤细 胞中的 STING 活化能够以T淋巴细胞和 NK 细胞 依赖的方式抑制休眠肿瘤细胞的复苏和转移^[79]。 因此,在肿瘤发生发展的不同阶段,STING 的激活 可能会有截然不同的功能。另外,肿瘤细胞也会 以环境依赖的方式重塑 STING 下游的信号通路, 以减少 STING 活化对肿瘤带来的不利影响,继而 允许 STING 活化维持肿瘤细胞生长、肿瘤转移和 耐药性的产生。

4.2 微核活化的 cGAS-STING 信号通路在肿瘤 治疗中的作用

广泛使用的化疗药物如端粒酶抑制剂、PARP 抑制剂和TOP2A抑制剂以及电离辐射均可诱导染 色体错误分离,促使微核形成。除了已知的抗肿 瘤机制外,近期研究表明化疗药物诱导微核形成 进而活化 cGAS-STING 信号通路在其抗肿瘤作用 中至关重要。如端粒酶 抑制剂能够诱导复制危 机,STING活化诱导的细 胞自噬是清除染色体不 稳定肿瘤细胞的关键机 制^[10]。同样, PARP 抑制 剂除了抑制复制功能外, 其活化的 cGAS-STING 信 号通路在诱导肿瘤细胞 凋亡以及炎症信号介导 的抗肿瘤免疫中扮演着 重要角色^[80-82]。TOP2A抑 制剂通过 cGAS-STING 信 号通路诱导细胞衰老的 发生和 SASP 的释放^[75]。 电离辐射后,肿瘤细胞中 的 cGAS-STING 信号通路 以T淋巴细胞依赖的方式 促进全身抗肿瘤免疫,诱 导移植的乳腺癌和黑色素

微核活化的 cGAS-STING 信号通路,一方面直接诱导肿瘤细胞自噬和凋亡的发生,清除肿瘤细胞;另一方面活化 I 型干扰素信号通路和经典NF-кB 信号通路以及介导 SASP 的释放,招募活化免疫系统对肿瘤细胞的清除.与此相对应的,STING 持续激活诱导的内质网应激,以及慢性 I 型干扰素信号通路和非经典NF-кB 信号通路的活化,营造免疫抑制的肿瘤微环境,导致肿瘤细胞的免疫逃逸和耐药性产生.此外,非经典NF-кB 信号通路活化能够促进肿瘤转移以及 IL-6 的释放,通过 IL-6/STAT3 信号轴直接促使肿瘤细胞的存活.cGAS:环鸟苷酸-腺苷酸合成酶;cGAMP:环鸟苷酸-腺苷酸;STING:干扰素基因刺激因子;NF-кB:核因子 κ B;SASP:衰老相关分泌表型;APC:抗原提呈细胞;STAT:信号转导及转录活化因子.

图 3 微核活化的 cGAS-STING 信号通路在肿瘤发生发展中的作用示意图 **Figure 3** Role of the micronucleus-activated cGAS-STING signaling pathway in tumorigenesis and development

瘤的消退^[72,83]。但也有研究发现,长时间的放射 治疗过程中,STING活化的 I 型干扰素信号通路 以及非经典NF-κB信号通路通过招募抑制性髓系 细胞和抑制树突状细胞活性,营造免疫抑制的肿 瘤微环境,从而导致放疗耐药性产生^[4446]。

综上所述,微核破裂激活的 cGAS-STING 信号通路在肿瘤的发生发展及治疗过程中均扮演着复杂的角色:一方面,有助于清除肿瘤细胞;另一方面,也可能导致肿瘤细胞的免疫逃逸、转移和存活,如图3所示。

5 结 语

微核作为不稳定的亚细胞器结构,其形成及 破裂等一系列生命活动的具体分子机制仍有许多 未知之处。微核基因组DNA,一方面会重新融到 细胞核基因组DNA中,为肿瘤基因组积累大量突 变和重组,导致染色体碎裂,协助肿瘤细胞的演化 发展;另一方面暴露在细胞质中的基因组DNA激 活 cGAS-STING信号通路,从而参与肿瘤细胞的演 化、免疫逃逸等一系列复杂的肿瘤生命活动。因 此,微核和cGAS-STING信号通路可作为肿瘤治疗 的良好靶标,但应考虑到这两者功能的复杂性,根 据肿瘤的发生阶段以及具体情况制订可靠的治疗 方案。此外,破裂的微核除了会暴露出基因组 DNA,同时也会特异性释放某些核蛋白到细胞质 中。这些核蛋白在肿瘤发生发展过程中扮演的角 色及功能未知,或将成为一些新的研究方向。

志谢 研究得到国家自然科学基金(31725017,31830052)、 国家重点研发计划(2021YFA1301401)支持.文章撰写过 程得到浙江大学实验动物中心徐令东博士帮助

Acknowledgements This work was supported by the National Natural Science Foundation of China (31725017, 31830052), and National Key R&D Program of China (2021YFA1301401). The writing of this article was assisted by Dr. XU Lingdong from the Laboratory Animal Center of Zhejiang University

利益冲突 所有作者均声明不存在利益冲突

Conflict of Interests The authors declare that there is no conflict of interests

©The author(s) 2024. This is an open access article under the CC BY-NC-ND 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/)

参考文献(References)

[1] BAKHOUM S F, CANTLEY L C. The multifaceted

role of chromosomal instability in cancer and its microenvironment[J]. Cell, 2018, 174(6): 1347-1360.

- [2] BAKHOUM S F, NGO B, LAUGHNEY A M, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472.
- [3] GOH J Y, FENG M, WANG W, et al. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence[J]. Nat Med, 2017, 23(11): 1319-1330.
- [4] TURAJLIC S, XU H, LITCHFIELD K, et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal[J]. Cell, 2018, 173(3): 581-594.e12.
- [5] HÄRTLOVA A, ERTTMANN S F, RAFFI F A, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote antimicrobial innate immunity[J]. Immunity, 2015, 42 (2): 332-343.
- [6] ZHOU W, WHITELEY A T, DE OLIVEIRA MANN C C, et al. Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance[J]. Cell, 2018, 174(2): 300-311.e11.
- [7] DU M, CHEN Z J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling[J].
 Science, 2018, 361(6403): 704-709.
- [8] MOHR L, TOUFEKTCHAN E, VON MORGEN P, et al. ER-directed TREX1 limits cGAS activation at micronuclei[J]. Mol Cell, 2021, 81(4): 724-738.e9.
- [9] SUN H, HUANG Y, MEI S, et al. A nuclear export signal is required for cGAS to sense cytosolic DNA[J]. Cell Rep, 2021, 34(1): 108586.
- [10] NASSOUR J, RADFORD R, CORREIA A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis[J]. Nature, 2019, 565(7741): 659-663.
- [11] LI T, HUANG T, DU M, et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis[J]. Science, 2021, 371(6535): eabc5386.
- ZHAO B, XU P, ROWLETT C M, et al. The molecular basis of tight nuclear tethering and inactivation of cGAS
 [J]. Nature, 2020, 587(7835): 673-677.
- [13] MICHALSKI S, DE OLIVEIRA MANN C C, STAFFORD C A, et al. Structural basis for sequestration and autoinhibition of cGAS by chromatin[J]. Nature, 2020, 587(7835): 678-682.
- [14] PATHARE G R, DECOUT A, GLÜCK S, et al. Structural mechanism of cGAS inhibition by the nucleosome[J]. Nature, 2020, 587(7835): 668-672.
- [15] BOYER J A, SPANGLER C J, STRAUSS J D, et al. Structural basis of nucleosome-dependent cGAS inhibition[J]. Science, 2020, 370(6515): 450-454.
- [16] KUJIRAI T, ZIERHUT C, TAKIZAWA Y, et al. Structural basis for the inhibition of cGAS by nucleosomes[J]. Science, 2020, 370(6515): 455-458.

- [17] ZHANG D, LIU Y, ZHU Y, et al. A non-canonical cGAS-STING-PERK pathway facilitates the translational program critical for senescence and organ fibrosis [J]. Nat Cell Biol, 2022, 24(5): 766-782.
- [18] LIU B, CARLSON R J, PIRES I S, et al. Human STING is a proton channel[J]. Science, 2023, 381 (6657): 508-514.
- [19] GUI X, YANG H, LI T, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway[J]. Nature, 2019, 567(7747): 262-266.
- [20] MUKAI K, KONNO H, AKIBA T, et al. Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7: 11932.
- [21] FANG R, JIANG Q, GUAN Y, et al. Golgi apparatussynthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING [J]. Immunity, 2021, 54(5): 962-975.e8.
- [22] FUERTES M B, KACHA A K, KLINE J, et al. Host type I IFN signals are required for antitumor CD8⁺ T cell responses through CD8α dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016.
- [23] DIAMOND M S, KINDER M, MATSUSHITA H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors[J]. J Exp Med, 2011, 208(10): 1989-2003.
- [24] KLARQUIST J, HENNIES C M, LEHN M A, et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells[J]. J Immunol, 2014, 193(12): 6124-6134.
- [25] WOO S R, FUERTES M B, CORRALES L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842.
- [26] MARCUS A, MAO A J, LENSINK-VASAN M, et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response[J]. Immunity, 2018, 49(4): 754-763.e4.
- [27] MENDER I, ZHANG A, REN Z, et al. Telomere stress potentiates STING-dependent anti-tumor immunity[J]. Cancer Cell, 2020, 38(3): 400-411.e6.
- [28] YUM S, LI M, FANG Y, et al. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections[J/ OL]. Proc Natl Acad Sci U S A, 2021, 118(14): e2100225118.
- [29] FRANCICA B J, GHASEMZADEH A, DESBIEN A L, et al. TNFα and radioresistant stromal cells are essential for therapeutic efficacy of cyclic dinucleotide STING agonists in nonimmunogenic tumors[J]. Cancer Immunol Res, 2018, 6(4): 422-433.
- [30] ZHANG L, JIANG C, ZHONG Y, et al. STING is a cellintrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2[J]. Nat Cell Biol, 2023, 25(8): 1208-1222.
- [31] KANG T W, YEVSA T, WOLLER N, et al. Senescence

surveillance of pre-malignant hepatocytes limits liver cancer development[J]. **Nature**, 2011, 479(7374): 547-551.

- [32] GLÜCK S, GUEY B, GULEN M F, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070.
- [33] SANTAGUIDA S, RICHARDSON A, IYER D R, et al. Chromosome mis-segregation generates cell-cyclearrested cells with complex karyotypes that are eliminated by the immune system[J]. Dev Cell, 2017, 41(6): 638-651.e5.
- [34] WU S, ZHANG Q, ZHANG F, et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity[J]. Nat Cell Biol, 2019, 21(8): 1027-1040.
- [35] MENG F, YU Z, ZHANG D, et al. Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity[J]. Mol Cell, 2021, 81(20): 4147-4164.e7.
- [36] HONG C, SCHUBERT M, TIJHUIS A E, et al. cGAS-STING drives the IL-6-dependent survival of chromosomally instable cancers[J]. Nature, 2022, 607(7918): 366-373.
- [37] COUSSENS L M, WERB Z. Inflammation and cancer[J]. Nature, 2002, 420(6917): 860-867.
- [38] CAÑADAS I, THUMMALAPALLI R, KIM J W, et al. Tumor innate immunity primed by specific interferonstimulated endogenous retroviruses[J]. Nat Med, 2018, 24(8): 1143-1150.
- [39] LI J, HUBISZ M J, EARLIE E M, et al. Non-cellautonomous cancer progression from chromosomal instability[J]. Nature, 2023, 620(7976): 1080-1088.
- [40] LI S, MIRLEKAR B, JOHNSON B M, et al. STINGinduced regulatory B cells compromise NK function in cancer immunity[J]. Nature, 2022, 610(7931): 373-380.
- [41] WU J, DOBBS N, YANG K, et al. Interferonindependent activities of mammalian STING mediate antiviral response and tumor immune evasion[J]. Immunity, 2020, 53(1): 115-126.e5.
- [42] CONCEPCION A R, WAGNER L E 2nd, ZHU J, et al. The volume-regulated anion channel LRRC8C suppresses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling[J]. Nat Immunol, 2022, 23(2): 287-302.
- [43] HOU Y, LIANG H, RAO E, et al. Non-canonical NFκB antagonizes STING sensor-mediated DNA sensing in radiotherapy[J]. Immunity, 2018, 49(3): 490-503.e4.
- [44] LIANG H, DENG L, HOU Y, et al. Host STINGdependent MDSC mobilization drives extrinsic radiation resistance[J]. Nat Commun, 2017, 8(1): 1736.
- [45] WEICHSELBAUM R R, ISHWARAN H, YOON T, et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemo-

therapy and radiation for breast cancer[J]. **Proc Natl** Acad Sci U S A, 2008, 105(47): 18490-18495.

- [46] GUO X, NI J, LIANG Z, et al. The molecular origins and pathophysiological consequences of micronuclei: new insights into an age-old problem[J]. Mutat Res Rev Mutat Res, 2019, 779: 1-35.
- [47] KLAASEN S J, TRUONG M A, VAN JAARSVELD R H, et al. Nuclear chromosome locations dictate segregation error frequencies[J]. Nature, 2022, 607(7919): 604-609.
- [48] DAUGHTRY B L, ROSENKRANTZ J L, LAZAR N H, et al. Single-cell sequencing of primate preimplantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion [J]. Genome Res, 2019, 29(3): 367-382.
- [49] GRATIA M, RODERO M P, CONRAD C, et al. Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS[J]. J Exp Med, 2019, 216(5): 1199-1213.
- [50] HE B, GNAWALI N, HINMAN A W, et al. Chromosomes missegregated into micronuclei contribute to chromosomal instability by missegregating at the next division[J]. Oncotarget, 2019, 10(28): 2660-2674.
- [51] KNEISSIG M, KEUPER K, DE PAGTER M S, et al. Micronuclei-based model system reveals functional consequences of chromothripsis in human cells[J/OL]. Elife, 2019, 8: e50292.
- [52] CRASTA K, GANEM N J, DAGHER R, et al. DNA breaks and chromosome pulverization from errors in mitosis[J]. Nature, 2012, 482(7383): 53-58.
- [53] SOTO M, GARCIA-SANTISTEBAN I, KRENNING L, et al. Chromosomes trapped in micronuclei are liable to segregation errors[J]. J Cell Sci, 2018, 131(13): jcs 214742.
- [54] UMBREIT N T, ZHANG C Z, LYNCH L D, et al. Mechanisms generating cancer genome complexity from a single cell division error[J]. Science, 2020, 368 (6488): eaba0712.
- [55] LIU S, KWON M, MANNINO M, et al. Nuclear envelope assembly defects link mitotic errors to chromothripsis
 [J]. Nature, 2018, 561(7724): 551-555.
- [56] HATCH E M, FISCHER A H, DEERINCK T J, et al. Catastrophic nuclear envelope collapse in cancer cell micronuclei[J]. Cell, 2013, 154(1): 47-60.
- [57] AGUSTINUS A S, AL-RAWI D, DAMERACHARLA B, et al. Epigenetic dysregulation from chromosomal transit in micronuclei[J]. Nature, 2023, 619(7968): 176-183.
- [58] ZHANG C Z, SPEKTOR A, CORNILS H, et al. Chromothripsis from DNA damage in micronuclei[J]. Nature, 2015, 522(7555): 179-184.
- [59] NADER G, AGÜERA-GONZALEZ S, ROUTET F, et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion[J]. Cell, 2021, 184(20): 5230-5246.e22.

- [60] LY P, BRUNNER S F, SHOSHANI O, et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements[J]. Nat Genet, 2019, 51(4): 705-715.
- [61] ZHAO M, WANG F, WU J, et al. CGAS is a micronucleophagy receptor for the clearance of micronuclei [J]. Autophagy, 2021, 17(12): 3976-3991.
- [62] LENGAUER C, KINZLER K W, VOGELSTEIN B. Genetic instabilities in human cancers[J]. Nature, 1998, 396(6712): 643-649.
- [63] XIA Y, PFEIFER C R, ZHU K, et al. Rescue of DNA damage after constricted migration reveals a mechanoregulated threshold for cell cycle[J]. J Cell Biol, 2019, 218(8): 2545-2563.
- [64] MAMMEL A E, HUANG H Z, GUNN A L, et al. Chromosome length and gene density contribute to micronuclear membrane stability[J/OL]. Life Sci Alliance, 2022, 5(2): e202101210.
- [65] DE NORONHA C M, SHERMAN M P, LIN H W, et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr[J]. Science, 2001, 294(5544): 1105-1108.
- [66] DE VOS W H, HOUBEN F, KAMPS M, et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies [J]. Hum Mol Genet, 2011, 20(21): 4175-4186.
- [67] VARGAS J D, HATCH E M, ANDERSON D J, et al. Transient nuclear envelope rupturing during interphase in human cancer cells[J]. Nucleus, 2012, 3(1): 88-100.
- [68] CHEN N Y, KIM P, WESTON T A, et al. Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures[J]. Proc Natl Acad Sci U S A, 2018, 115(40): 10100-10105.
- [69] DENAIS C M, GILBERT R M, ISERMANN P, et al. Nuclear envelope rupture and repair during cancer cell migration[J]. Science, 2016, 352(6283): 353-358.
- [70] RAAB M, GENTILI M, DE BELLY H, et al. ESCRT Ⅲ repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death[J]. Science, 2016, 352(6283): 359-362.
- [71] VIETRI M, SCHULTZ S W, BELLANGER A, et al. Unrestrained ESCRT- III drives micronuclear catastrophe and chromosome fragmentation[J]. Nat Cell Biol, 2020, 22(7): 856-867.
- [72] HARDING S M, BENCI J L, IRIANTO J, et al. Mitotic

progression following DNA damage enables pattern recognition within micronuclei[J]. **Nature**, 2017, 548 (7668): 466-470.

- [73] MACKENZIE K J, CARROLL P, MARTIN C A, et al. cGAS surveillance of micronuclei links genome instability to innate immunity[J]. Nature, 2017, 548(7668): 461-465.
- [74] SENOVILLA L, VITALE I, MARTINS I, et al. An immunosurveillance mechanism controls cancer cell ploidy[J]. Science, 2012, 337(6102): 1678-1684.
- [75] DOU Z, GHOSH K, VIZIOLI M G, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer[J]. Nature, 2017, 550(7676): 402-406.
- [76] SHELTZER J M, KO J H, REPLOGLE J M, et al. Single-chromosome gains commonly function as tumor suppressors[J]. Cancer Cell, 2017, 31(2): 240-255.
- [77] ROWALD K, MANTOVAN M, PASSOS J, et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth[J]. Cell Rep, 2016, 15(12): 2679-2691.
- [78] AHN J, XIA T, KONNO H, et al. Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5: 5166.
- [79] HU J, SÁNCHEZ-RIVERA F J, WANG Z, et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma[J]. Nature, 2023, 616(7958): 806-813.
- [80] DING L, KIM H J, WANG Q, et al. PARP inhibition elicits STING-dependent antitumor immunity in brcaldeficient ovarian cancer[J]. Cell Rep, 2018, 25(11): 2972-2980.e5.
- [81] SEN T, RODRIGUEZ B L, CHEN L, et al. Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer[J]. Cancer Discov, 2019, 9(5): 646-661.
- [82] CHEN Z, YAO L, LIU Y, et al. LncTIC1 interacts with β-catenin to drive liver TIC self-renewal and liver tumorigenesis[J]. Cancer Lett, 2022, 545: 215835.
- [83] VANPOUILLE-BOX C, ALARD A, ARYANKALAYIL M J, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618.

[本文编辑 沈 敏 沈 洁]