
 
 

PNAS  2024  Vol. 121  No. 0  e2300582121� https://doi.org/10.1073/pnas.2300582121   1 of 13

Rapid single-particle chemical imaging of nanoplastics by SRS 
microscopy
Naixin Qiana , Xin Gaoa , Xiaoqi Langa, Huiping Dengb, Teodora Maria Bratub, Qixuan Chenc, Phoebe Stapletond , Beizhan Yanb,1 ,  
and Wei Mina,e,1

Edited by Eric O. Potma, University of California, Irvine, CA; received January 11, 2023; accepted October 24, 2023 by Editorial Board Member  
Shaul Mukamel

RESEARCH ARTICLE | CHEMISTRY
ENVIRONMENTAL SCIENCES

Plastics are now omnipresent in our daily life. The existence of microplastics (1 µm to 
5 mm in length) and possibly even nanoplastics (<1 μm) has recently raised alarming 
toxicity and health concerns. In particular, nanoplastics are believed to be more toxic 
since their smaller size renders them much more amenable, compared to microplastics, 
to enter the human body. However, detecting nanoplastics imposes tremendous ana-
lytical challenges on both the nano-level sensitivity and the plastic-identifying speci-
ficity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To 
address these challenges, we developed a hyperspectral stimulated Raman scattering 
(SRS) imaging platform with an automated plastic identification algorithm that allows 
micro-nano plastic analysis at the single-particle level with high chemical specificity 
and throughput. We first validated the sensitivity enhancement of the narrow band of 
SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised 
a data-driven spectral matching algorithm to address spectral identification challenges 
imposed by sensitive narrow-band hyperspectral imaging and achieve robust determi-
nation of common plastic polymers. With the established technique combining the best 
detection sensitivity and chemical specificity, we studied the micro-nano plastics from 
bottled water as a model system. We successfully detected and identified nanoplastics 
from major plastic types. Micro-nano plastics concentrations were estimated to be about 
2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. 
This is orders of magnitude more than the microplastic abundance reported previously in 
bottled water. High-throughput single-particle counting revealed extraordinary particle 
heterogeneity and nonorthogonality between plastic composition and morphologies; 
the resulting multidimensional profiling sheds light on the science of nanoplastics.

optical microscopy | nanoplastic | Raman imaging | single particle analysis

Plastic pollution has been a rising global concern, with increasing plastic consumption 
every year (1). Microplastic contaminations have been identified to prevalently from 
almost everywhere in the environments and even human biological samples (2–4). 
Moreover, mounting discoveries suggest that the fragmentation of plastic polymer does 
not stop at the micron level but rather continues to form nanoplastics with expected 
quantities orders of magnitude higher (5). With engineered plastic particles with fluores-
cent dyes or metal labels, researchers have shown the possibility of nanoplastics crossing 
the biological barrier and entering the biological systems (6–9), raising public concern on 
its potential toxicity (10).

Despite the urge to assess the concern, nanoplastics analysis remains challenging with 
traditional techniques. Unlike engineered nanoparticles prepared in laboratory as model 
systems, real nanoplastics in the environment are intrinsically label-free and have significant 
heterogeneity in both chemical composition and particle morphologies (11), which are 
likely to endure correspondingly different toxicity implications (12, 13). To address the 
existing knowledge gap on nanoplastics regarding their source, abundance, fate, and poten-
tial toxicity encoded in such a heterogeneous population, single-particle imaging with 
chemical specificity is undoubtedly essential to avoid informational loss from ensemble 
measurement. However, traditional single-particle chemical imaging techniques, namely 
FTIR or Raman microscopy, suffer from relatively poor instrumental resolution and 
detection sensitivity (14, 15), which limit their success in revealing the heterogeneity only 
at microplastic level (16, 17). Particle imaging techniques with nano-sensitivity for plastic 
particles, such as electron microscopy and atomic force microscopy, lack the crucial chem-
ical specificity to distinguish different compositions (18, 19). Extensive efforts have been 
made; however, most techniques are still bound by the fundamental trade-off between 
sensitivity and specificity, a recurring theme in analytical science (15, 20). Very recently, 
single-particle imaging with chemical spectroscopy started to be demonstrated by AFM-IR 
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and STXM (21–23), but with extremely low throughput (>10 
min/µm2 with spectra for plastic identification), leaving it still 
insurmountable to quantify environmental micro-nano plastics 
with sufficient throughput and statistics. In summary, sensitivity, 
specificity, and throughput of single-particle analysis are the three 
crucial requirements to analyze nanoplastics in real-life samples.

Herein, we introduce a data science–driven hyperspectral stim-
ulated Raman scattering (SRS) microscopy as a powerful platform 
of nanoplastics detection to meet the three requirements. SRS 
microscopy utilizes stimulated Raman spectroscopy as the imaging 
contrast mechanism and has found increasing utility in biomedical 
imaging (24–27). While SRS is often credited for speeding up 
regular Raman imaging by over 1,000 times (26–29), which ena-
bles fast identification of microplastics (30, 31), whether it can 
reach the detection limit of nanoplastic remains unknown. To 
maximize the sensitivity needed for detecting individual nano-
plastic, we adopted a narrowband SRS imaging scheme by focus-
ing all the energy of the stimulating beam to target characteristic 
vibrational modes with the largest Raman cross-sections (32). We 
then showed that, both theoretically and experimentally, narrow-
band SRS imaging can enable the detection of nanoplastic as small 
as 100 nm. However, the limited spectral features from only the 
strongest vibrational signatures above the detection limit impose 
challenges on automated spectrum identification, which is essen-
tial for high-throughput plastic particle analysis. To address this 
fundamental sensitivity-specificity trade-off and unleash the full 
potential of hyperspectral SRS imaging, we devised a data-driven 
SRS-tailored spectral matching algorithm based on the spectral 
library of seven common plastic standards. The intrinsic chemical 
specificity from vibrational signatures in the shape of SRS spec-
troscopy is successfully recovered for automated polymer identi-
fication for nanoplastic detection with the help of the data-driven 
algorithm.

Equipped with this platform, we then studied micro-nano plas-
tics in daily consumed bottled water as a prototype of a real-life 
sample. Individual particles for all seven plastic polymers from the 
library were identified, enabling statistical analysis of plastic  
particles with sizes down to 100 to 200 nm. The exposure to 
micro-nano plastics was estimated with a specified polymer com-
position. Integrating morphological information from imaging, 
multi-dimensional characterizations of individual plastic particles 
are reported, unveiling the all-around heterogeneities of plastic 
particles in a hidden micro-nano world encircling us.

1.  SRS Imaging of Polystyrene Nanospheres 
with Single-Particle Sensitivity

SRS microscopy is well known to be orders of magnitude faster 
than regular Raman imaging. The former has a typical pixel dwell 
time of 1 to 100 µs, but the latter often needs 0.01 to 1 s per pixel 
(25, 26). The drastically higher imaging speed of SRS microscopy 
hence provides high throughput on particle imaging. However, 
whether high-speed SRS has a better detection limit than regular 
Raman and whether it can actually reach the single-particle sen-
sitivity of nanoplastics are not obvious. It is possible that the limit 
of detection is compromised under the high imaging speed for 
SRS. A theoretical investigation is helpful in the first place. For a 
given major type of plastic polymer, we can estimate the mass of 
a 100-nm-diameter nanoplastics based on the plastic density and 
calculate the number of repeating units (i.e., constituting mono-
mer) via its molecular weight. As shown in SI Appendix, Table S1, 
this number is around 106 for most major plastic types. By con-
sidering the structural nature of the monomers, we then further 

estimated the number of most abundant chemical bonds in a 
single plastic particle to be ~107.

Based on the above quantification, we can theoretically explain 
why a 100 nm nanoplastic particle is extremely difficult to be 
detected by conventional Raman microscopy. The spontaneous 
Raman cross-section of a typical C–H vibration is about 10−29 
cm2. Hence, the spontaneous Raman cross-section of a 100-nm 
nanoparticle is 10−22 cm2. The laser waist area can be shrunk to 
about 2 × 10−9 cm2 under a high numerical aperture microscope 
objective. The probability of Raman scattering event per excitation 
photon is then (10−22 cm2)/(2 × 10−9 cm2) = 5 × 10−14. Assuming 
a moderately high laser power of 10 mW with a conventional 532 
nm laser, which corresponds to an excitation flux of 3 × 1016 
photons/s, and a rather long acquisition time of 100 ms (a small 
128 × 128 image will take half an hour), only about 150 photons 
can be generated per particle in total via spontaneous Raman 
scattering. Considering the quantum yield of the entire instrument 
(including objective, filters, pinhole, spectrometer, and camera) 
typically is ~1%, roughly only 1.5 photons can be ultimately 
detected. Such a feeble signal can be easily overwhelmed by noise 
from other backgrounds such as autofluorescence.

We are now in a position to predict the performance of SRS 
for nanoplastic imaging. By employing an additional coherent 
Stokes laser, SRS amplifies the feeble scattering crossing section 
of a specific spectral mode (defined by the energy difference 
between pump and Stokes lasers) via quantum stimulation. When 
a pulsed narrowband Stokes laser is used (24, 33), the stimulated 
Raman enhancement factor can be maximized to more than 108 
(32, 34). Then, the stimulated Raman cross-section of a nanopar-
ticle is amplified from 10−22 to ~10−14 cm2. The probability of a 
stimulated Raman scattering event per pump excitation photon 
becomes (10−14 cm2)/(2 × 10−9 cm2) = 5 × 10−6, which is measured 
as a stimulated Raman loss experienced by the pump beam tar-
geting C–H vibration. The noise of the pump beam under 
high-speed SRS microscopy acquisition (18 µs/pixel) is measured 
to be 5 × 10−7 (Fig. 1), which is about 10× lower than the expected 
stimulated Raman loss signal from a single 100-nm plastic particle. 
Thus, we predict that narrowband SRS shall break the detectability 
barrier of spontaneous Raman and bring a single nanoplastic par-
ticle into detection in just tens of microseconds.

We then experimentally verify the superb detection sensitivity 
using standard plastic particles. Polystyrene is one of the most 
common plastics widely used in daily life. Polystyrene particles of 
specified sizes are commercially available as analytical standards 
and have been routinely used as a model material to study 
micro-nanoplastics (35, 36). The Raman spectrum of polystyrene 
suggests a prominent peak at 3,050 cm−1 from aromatic C–H 
vibration on the phenyl ring (SI Appendix, Fig. S1A), which can 
be selectively amplified for SRS imaging by tuning the difference 
of pump and Stokes beams to match this transition energy. Using 
commercial PS micro-nano spheres from 100 nm to 3 µm, we 
evaluated the detection sensitivity of our SRS microscope in imag-
ing nanoplastics. To stabilize the particles during imaging, we 
embedded the diluted PS particles in agarose gel. As the particle 
size goes smaller, the residue of the water background around 
3,000 cm−1 starts to dominate (SI Appendix, Fig. S2A), over-
whelming the authentic spectrum of individual PS nanoparticles. 
To resolve this background issue for better imaging contrast, we 
substituted regular H2O with D2O to prepare the agarose gel 
(SI Appendix, Fig. S2B). Compared to H2O, the Raman spectrum 
of D2O is red-shifted to the silent region (2,200 to 2,800 cm−1, 
SI Appendix, Fig. S3), creating a background-free environment 
for probing C–H vibration.
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SRS intensity of individual particles can be thereby measured 
from single-channel narrow-band imaging with high-throughput 
(~1,000 particles in one 51 × 51 µm FOV within 2 s, SI Appendix, 
Fig. S4). This imaging speed is orders of magnitude faster than 
other nanoplastic imaging techniques, such as AFM-IR and 
STXM (21, 23, 37). With the optical diffraction limit, the 
optimal spatial resolution of SRS microscopy is measured to be 
365 nm (Fig. 1 H and I). With a spatial sampling of 200 nm 
pixel size for high-throughput imaging, individual PS nano-
spheres of above 500 nm can be discerned with their shape from 

the images (Fig. 1 D–G). When the size of the particles goes 
smaller than the diffraction limit (Fig. 1 A–C), the finite optical 
resolution renders the particle image a diffraction-limited pat-
tern. Yet, the SRS intensity of a single particle can still be readily 
recognized down to 100 nm based on the diffraction limit pat-
tern and the intensity distribution (SI Appendix, Fig. S5). Thus 
experimentally, we have shown that compared to regular spon-
taneous Raman, SRS imaging can offer orders of magnitude 
higher imaging speed/throughput and a superior limit of detec-
tion for nanoplastics analysis.
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Fig. 1. SRS imaging of standard PS micro-nano spheres for detection sensitivity and resolution characterization. (A–G) Representative SRS images (3,050 cm−1) 
of standard PS micro-nano sphere with different sizes: (A) 0.13 µm, (B) 0.24 µm, (C) 0.29 µm, (D) 0.46 µm, (E) 0.67 µm, (F) 1 µm, and (G) 3 µm. (Scale bar, 2 µm.) (H) 
SRS images of 0.24-µm PS nanosphere (3,050 cm−1) with 16 nm pixel size. (Scale bar, 0.5 µm.) (I) The normalized intensity distributions along the corresponding 
dash lines in Figure (H). (J and K) Linear dependence of the logarithm of stimulated Raman loss signals ( 

ΔI
p

I
p

 , measured at 3,050 cm−1) with the logarithm of 
particle size in diameter (µm). The red dashed line shows a linear fitting (R2 = 0.998) with a slope of 2.98. Error bars, mean ± SD. Red solid line inserted indicates 
shot-noise-limited SRS detection limit where SNR = 1.
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A linear relationship was observed between the logarithm of 
SRS signal ( ΔIp∕Ip ) and the logarithm of diameter for PS particles 
smaller than 0.7 µm (Fig. 1J and SI Appendix, Supplementary Note 
3). The trendline with a slope of 2.98 within the range indicates 
the SRS signal ( ΔIp∕Ip ) increase linearly with the particles’ volume, 
which scales in cubic as the particles’ diameters increase. When 
the particles’ size is enlarged to overfill the effective focal volume 
sequentially in first x, y, and later z dimensions (SI Appendix, 
Fig. S14), the linear dependency disappears. This good linearity 
(R2 = 0.998) is due to the fundamental linear dependency of the 
SRS signal on the concentration of the target analyte, providing 
powerful utilities in several aspects. First, the actual size of particles 
below the diffraction limit can be estimated based on the obtained 
calibration curve (SI Appendix, Fig. S16A), extending the size 
characterization limit. Second, with the known information on 
the plastic density, the same calibration curve can be transformed 
into a reference to deduce a particle mass out of a detected SRS 
nanoplastics image (SI Appendix, Supplementary Note 3 and 
Fig. S16B). Finally, taking an SNR of one as the threshold, the 
detection limit of our narrowband SRS microscope can be deter-
mined (Fig. 1K) to reach PS nanospheres down to 60 nm.

2.  Fundamental Challenges on Chemical 
Identification of Nanoplastics with 
Hyperspectral SRS Imaging

Nano-sensitivity solves the first-order issue to ensure the plastic 
particles are detectable. The chemical specificity of a technique is 
also crucial to identify plastics from other co-existing substances 
and further distinguishing plastic polymers from each other. 
Harnessing vibrational spectroscopy as imaging contrast, SRS 
microscopy, in principle, holds the demanded specificity for chem-
ical imaging. Instrumentally, we perform hyperspectral SRS imag-
ing via the spectral-focusing technique (38, 39). Choosing the 
central pump wavelength is critical under this hyperspectral SRS 
regime as it will determine the detective range of the target Raman 
spectral window. To best cover the characteristic strong feature of 
the plastic Raman spectrum (SI Appendix, Fig. S1) within the 
tuning range of the instrument (790 to 910 nm), we carefully 
choose 793, 804, 886, and 897 nm as four central wavelengths to 
include the strong and characteristic spectral features of C–H 
(unsaturated and saturated carbons, 3,110 to 2,800 cm−1), ester 
bonds (1,770 to 1,670 cm−1), and double bond vibration (1,660 
to 1,580 cm−1) for better distinguishment between each plastic 
type. We constructed a small library by measuring the bulk SRS 
spectra of seven most common plastic polymers (Fig. 2A): poly-
amide 66 (PA), polypropylene (PP), polyethylene (PE), polyme-
thyl methacrylate (PMMA), polyvinyl chloride (PVC), polystyrene 
(PS), and polyethylene terephthalate (PET) with fine spectral 
intervals (~3 cm−1).

Unlike bulk spectra measurement, single-particle imaging of 
nanoplastics requires a much smaller pixel size, longer integration 
time, and higher power for optimal signal-to-noise ratio. Therefore, 
due to the fundamental trade-off between detection sensitivity 
and specificity, it is nearly impossible to measure nanoplastics with 
such fine spectral intervals (hours of imaging time per FOV with 
increasing possibility of sample drifting and burning during the 
time). Moreover, the spectral resolution of a hyperspectral SRS 
microscope based on spectral focusing is typically 10 to 25 cm−1. 
For efficient hyperspectral imaging with a proper balance between 
throughput and spectral resolution, we further subsampled  
the spectra (SI Appendix, Fig. S6) with the spectral interval of  

~15 cm−1, which is only slightly above the spectral resolution and 
yielded acceptable imaging throughput (~0.5 h per 0.2 mm ×  
0.2 mm FOV) for single-particle chemical imaging of nanoplastics.

High-throughput plastic particle analysis also requires auto-
mated spectral analysis for plastic identification. Spectral matching 
algorithms for automated chemical identification are prevalently 
adopted in microplastic analysis based on FTIR or Raman spec-
troscopy (40, 41). With thousands of particle spectra in need of 
analysis in a typical environmental study, manual plastic identifi-
cation and counting are not only impossibly labor-intensive but 
also subjected to human bias (14, 40–42). Automated particle 
analysis helps to speed up the measurement, analyze more parti-
cles, as well as ensure ubiquitous and unbiased plastic identifica-
tion. Understanding the need for automation in environmental 
science, we started with applying the classic library matching 
algorithms in FTIR and Raman analysis but found them not so 
compatible with narrow-band SRS hyperspectral analysis. Take a 
detected spectrum from particle A prepared from grinding the PA 
standard as an example (Fig. 2B). After spectrum pre-processing 
on background subtraction and data normalization, the spectrum 
of particle A clearly matches the SRS signature of polyamide. 
However, when measuring the spectral similarities of particle A 
to bulk plastic standards from the library using common spectral 
matching algorithms (42), such as Pearson’s correlation coefficient 
(PC) or squared Euclidean cosine (SEC) measurement, the iden-
tification results appears elusive (Fig. 2 D and E). In a real-life 
sample analysis, there should be no premise to assume particle A 
should belong to any standard plastics in the library, which means 
a yes or no judgment has to be made independently for each plastic 
standard based on a given threshold. The common threshold 
employed in FTIR or spontaneous Raman analysis of microplastics 
is the similarity measurement above 0.7, which is clearly too low 
to identify Particle A. Since PS nanoparticles are available as model 
standards, we first try to study the similarity threshold of each 
algorithm for nanoplastics analysis under hyperspectral SRS imag-
ing. The similarity threshold can then be determined based on the 
quartile of identifying at least 95% of the PS particles (similarity 
index above 0.75 for PC, and similarity index above 0.94 for 
SEC). However, the challenging part of making a binary identi-
fication judgment remains in the case of particle A as similarity 
measurements from three plastic polymers (PA, PP, and PVC) are 
very close in number and all above the threshold (Fig. 2 D and 
E). Note that one cannot simply pick the best score among all the 
standards because it is totally possible for A to be nonplastic mate-
rials in real sample analysis. In fact, if we simulate the possible 
nonplastic SRS spectra based on the model standard spectrum of 
biomass represented by E. coli, over 95% of them will have similar 
measurements against PA standard over the given threshold for 
both two algorithms (SI Appendix, Fig. S12 A and B).

We reflect that the main reason underlying the above difficulty 
stems from the trade-off between detection sensitivity and speci-
ficity. Emphasizing the chemical specificity, spontaneous Raman 
spectroscopy, or other broadband coherent Raman microscopy 
can cover an extended spectral window (>1,000 cm−1) by distrib-
uting the optical power among a large number of Raman vibra-
tional modes. The rich spectral information can enable chemical 
identification with simple algorithms but comes with the cost of 
over thousand times compromised detection sensitivity under a 
limited pixel dwell time (43–45). However, in the context of nan-
oplastics analysis, detecting the particle signal is the premise before 
chemical identification from the vibrational spectrum. With the 
aim of measuring as small plastic particles as possible under prac-
tical throughput, eventually, only the strongest Raman features 
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Fig. 2. Recovering the chemical specificity for polymer identification with SRS-tailored data-driven spectral matching algorithms. (A) Normalized SRS spectra of plastic 
standards (PA, PE, PET, PMMA, PP, PS, and PVC) and a nonplastic standard (E. coli). (B and C) Examples of particle spectra: (B) particle A: PA microparticle (C) particle B: standard 
PS nanosphere. (D and E) Similarity quantification results for particles A and B from conventional spectral-matching algorithms: (D) Pearson’s correlation coefficients and 
(E) Squared Euclidean Cosine (SEC). The red dashed line indicates the threshold condition with 95% identification rate of the standard PS nanospheres. The same threshold 
condition creates elusive identification for particle A. (F) The learning process is indicated by the scatter plot of ln(SMCSRS) against SRS intensity α obtained from Eq. 1. Solid 
data points are from the synthetic dataset including standards. The blue circular data points are experimental data from hyperspectral SRS imaging of PS nanospheres 
of three different sizes, which well colocalize with the points from the synthetic PS spectrum (light blue) with good separation from synthetic data of other chemical 
compositions (solid data points in other colors). The red solid line indicates the threshold line drawn for plastic polymer identification. (G) Confusion matrix for threshold 
condition evaluation based on experimental plastic particle measurement (H–N). Polymer identification results of the example particle A and particle B using SRS-tailored 
data-driven spectral matching algorithms. In each image of (H–N), the black line is the determined threshold from the learning process. The light blue circle from standard 
PS particle B is confirmed perfectly only with the PS matching scheme having the SMCSRS value below the threshold line (Fig. 2M). The red circle from unknown particle A 
is unambiguously identified to be PA with only the PA matching scheme having the SMCSRS value below the threshold line (Fig. 2H).
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will be detectable with reasonable SNR. For most plastics, which 
are organic polymers by nature, the strongest Raman signatures 
reside within the limited C–H vibration window. In this case, 
specific chemical identification requires the algorithms to precisely 
capture the shape feature within the restricted spectral window, 
which is beyond the capacity of conventional spectral matching 
algorithms. Moreover, the inevitably compromised circumscribed 
signal-to-noise ratio when imaging diminutive nanoparticle create 
further challenges in spectral interpretation for robust chemical 
identification. Therefore, new methods are demanded to address 
the specificity challenge imposed by the SRS instrumentation that 
enables unprecedented sensitivity in imaging nanoplastics.

3.  A Data-Driven SRS-Tailored Spectral 
Matching Algorithm Recovers Chemical 
Specificity

Harnessing data science, we aim to develop algorithms that can 
better interpret the shape of detected SRS features and retrieve 
the chemical specificity for polymer identification. First, an SRS-
tailored spectral matching coefficient (SMCSRS) is developed as 
an indicator to quantify spectral similarity with minimized noise 
interference (Fig. 2, Eq. 1). SMCSRS uses an optimization algo-
rithm that considers the detected SRS spectrum x originating from 
scaling (intensity factor α ) the normalized bulk standard spectrum 
s, plus a certain background contribution at the imaging condition 
( βb , 0 ≤ β < 1). The fitted spectrum ( αs + βb ) was compared with 
the detected particle spectrum x to find the minimum possible 
spectral distance as SMCSRS. The smaller SMCSRS value indicates 
a higher spectral similarity to the corresponding standards. This 
indicator SMCSRS provides several advantages for the purpose of 
detecting nanoplastics over the conventional feature extraction 
algorithms for spectral similarity measurement. The optimization 
algorithm considers all spectral points simultaneously, which 
reduces the direct influences induced by the noise on each par-
ticular spectral point. Such an essentially fitting process leverages 
the reliability of the similarity measurement. In addition, the out-
come of the measurement is interpretable. The well-defined inten-
sity factor α and background factor β can indicate the contribution 
from each spectral component (the particle and the surrounding 
backgrounds). Finally, the spectral distance measurement provides 
metric similarity evaluation.

With the spectral similarity quantified in this refined way, we 
returned to face the challenge of making a nonarbitrary binary 
judgment for polymer identification. We planned to develop a 
learning-based method to determine the previously elusive binary 
threshold for the identification of all plastic polymers. Our premise 
is that if we can measure the nanoparticle spectra for all types of 
plastics within the library, we shall be able to learn from the data 
and draw the correct boundary for identification based on the 
distribution of the particles with known identities. However, in 
reality, only PS nanospheres are commercially available with 
well-characterized chemical composition and nano sizes. Without 
reliable ground truth from other polymer nanoparticles, we have 
to seek alternative ways to gather the massive information needed 
for rigorous threshold determination.

Inspired by the increasing utilities of synthetic data in AI (46), 
and the growing involvement of data science in SRS microscopy 
(47–49), we realized that we could simulate the experimental SRS 
spectra of nanoplastics from the bulk standard spectra to serve as 
a training dataset (i.e., synthetic data). Based on our understand-
ing of the SRS instrumentation, we proposed a model, where there 
are two main sources of noise in a typical hyperspectral SRS spec-
trum: one is fundamental noise on the SRS intensity as in a 

shot-noise-limited scenario, which can be easily read out from the 
same SRS image; the other is the frequency uncertainty imposed 
by the SRS instrumentation, where both the laser profile and the 
moving delay stage can result in fluctuation of the actual frequency 
excited in each measurement around the preset spectral points. 
Assuming the fluctuation follows a Gaussian distribution, we used 
PS nanospheres as the standard model to investigate the fluctua-
tion range and found an impressive consistency in SMCSRS cal-
culation from the synthetic spectra and measured spectra of PS 
nanoparticles (SI Appendix, Supplementary Note 2 and Fig. S10). 
The combinatory nature of noise origins explains the dependency 
of the SMCSRS value on the intensity of the spectrum ( α ), as 
suggested in the simulation and validated by the experiment 
(Fig. 2F).

Applying the same model for all standards in the library, we 
generated a synthetic dataset containing the possible SRS spectra 
for nanoplastics of each polymer in the plastic library. A nice 
separation of the SMCSRS value appears between the spectra of 
particle X ( X = R , R is the correct identity of standard polymer) 
and spectra of particle X ( X ≠ R ) in all scatter plots (SI Appendix, 
Fig. S11). With the massively generated synthetic data points,  
a logarithmic function was fitted according to the trend of the 
scattered points as the threshold line for polymer identification 
(SI Appendix, Supplementary Note 2 and Table S2).

We first evaluate the identification performance by simulating 
another synthetic dataset from all standards in the library. 
Compared with conventional spectral matching algorithms, the 
SRS-tailored developed shows minimal false positives in plastic 
identification (SI Appendix, Fig. S12). No more than 0.5% of 
nonplastic spectra (simulated from E. coli) is misidentified as a hit 
for any plastic types in the library (SI Appendix, Fig. S12C), which 
is a drastic improvement from over 97% using conventional spec-
tral matching algorithms (SI Appendix, Fig. S12 A and B). False 
positive between polymers of similar SRS spectrum is also much 
reduced with the maximum to be around 5% PA misidentified as 
PP (SI Appendix, Fig. S12C). The same number is also as high as 
over 97% if PC or SEC are used as similarity measurements with 
the determined thresholds (SI Appendix, Fig. S12 A and B).

To further address the possible rare cases where a particle is 
identified as hits for more than one polymer in the library, the 
chemical identity of the corresponding particle will be assigned 
to the polymer with the smallest SMCSRS value. With the estab-
lished spectral identification workflow, an over 96% identification 
rate can be achieved with a false positive rate below 1% for all 
polymers in the library (SI Appendix, Fig. S12D). Since PS nano-
sphere was the only available nanoplastic standard, the experimen-
tal validation of the workflow is based on the imaging of the 
corresponding microplastics prepared from grinding the polymer 
standards with the cryo-mill. Hoping to mimic a similar level of 
spectral variation to the best extent, the imaging condition is 
adjusted accordingly to match the signal-to-noise ratio of nano-
plastic measurement. Finally, we confirmed the same identification 
rate of over 96% in the experimental particle measurement with 
no observed plastic particles misidentified as other polymers 
within the library (Fig. 2G).

Development of this data-driven algorithm allows for the iden-
tification of each plastic polymer due to the distinct vibrational 
features within a spectral window restricted by the SRS instru-
mentation, thus retrieving the required chemical specificity for 
automated spectral identification. Revisiting the identification of 
particle A and standard PS nanosphere B, we can correctly identify 
both particle A and particle B across the library to be PA and PS 
(Fig. 2 H–N), with SMCSRS well captures the shape differences 
missed by conventional algorithms and threshold learned from 
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the data-driven study. Coupling the mindset from data science 
with advanced measurement science, we finally overcome the fun-
damental sensitivity-specificity trade-off for high throughput 
hyperspectral SRS analysis. Superb nano-sensitivity from narrow- 
band SRS amplification and chemical specificity with robust 
chemical identification are simultaneously accomplished to fill the 
missing void in tools for nanoplastics analysis.

4.  Developing Workflow for Micro-Nano Plastic 
Detection from Bottled Water

With the platform established, we moved on to apply the utility 
to study micro-nano plastics from real-life samples. Microplastics 
have been widely found in human foods (50), drinks (51), and 
product packaging (52–55), among which bottled water is of par-
ticular interest for being an important source of microplastics  
to be ingested in daily life (56–59). Limited by the sensitivity-
specificity trade-off of analytical science (SI Appendix, Fig. S18B), 
the literature knowledge is constrained to microplastics in bottled 
water (SI Appendix, Table S4) (19, 60–62), leaving the nanoplas-
tics mostly uncharted. So far, only ensemble characterizations 
using combinations of techniques are reported to analyze the ali-
quots of concentrated particles with no information addressing 
the intrinsic heterogeneity at a single-particle level (SI Appendix, 
Fig. S18A) (63, 64). Here, we report a concise workflow for com-
prehensive micro-nano plastics characterization enabled by rapid 
single-particle chemical imaging with nano-sensitivity by SRS 
microscopy. Rich information can be acquired from a single meas-
urement to achieve simultaneous characterization of chemical 
composition and morphology, enabling multi-dimensional statis-
tics through high-throughput single-particle analysis.

Filtration is one of the most common methods to collect par-
ticles above certain sizes onto a membrane surface. It would be 
highly preferable for analyzing real-world samples if the collected 
membrane is directly compatible for SRS imaging. Aluminum 
oxide membranes have minimal background in the target spectral 
window and have shown good compatibility with vibrational spec-
troscopy. The seemingly opaque aluminum oxide membrane can 
be easily transformed into a transparent imaging window by apply-
ing heavy water to reduce refractive index mismatch. This resulted 
in transmissive SRS imaging with acceptable signal retention 
(~70% of the original sensitivity, SI Appendix, Fig. S7 B and C). 
Embedding the particles on the membrane surface in situ with 
agarose gel prepared with D2O further enabled stationary SRS 
imaging of individual particles with minimal imaging background. 
In this way, a concise sample preprocessing is enough for high-quality 
SRS imaging of the original filtration membrane (SI Appendix, 
Fig. S7A), avoiding undesirable sample loss or contamination in 
any complicated sample drying or transferring processes.

The established workflow for analyzing micro-nano plastics 
exposure from bottled water with hyperspectral SRS imaging is 
presented in Fig. 3. For each sample, five or more fields of views 
(FOVs) were randomly sampled within the collecting area for 
hyperspectral imaging under SRS microscopy (Fig. 3D). In each 
FOV, micro-nano plastics were detected by an integrated data 
analysis workflow that automatically performed the particle seg-
mentation and plastic identification with the developed algorithms 
and validated threshold conditions. Morphological and chemical 
information of each individual plastic particle obtained from  
the hyperspectral SRS images was then combined to provide 
high-dimensional profiling (Fig. 3E). Following the procedure, 
we analyzed bottled water from three different brands acquired at 
the same time from a large retailer. With no access to plastic-free 
water in the lab (SI Appendix, Supplementary Note 6), the Anodisc 

filters are prepared and measured in the same way as blank control. 
In the results, we were able to detect individual particles for all 
seven plastic polymers in the library unambiguously by spectral 
matching with their corresponding bulk standards (Fig. 4), 
demonstrating the powerful plastic identification capability of our 
data-driven hyperspectral SRS imaging platform.

5.  Multidimensional Profiling of Micro-Nano 
Plastic in Bottled Water

Quantification from single-particle images with identified plastic 
polymer composition provides multi-dimensional information to 
build the analytical panorama of underexplored nanoplastics in 
bottled water.

Number quantification through particle counting suggests that 
on average, 78 to 103 plastic particles were identified in each FOV 
(0.2 mm × 0.2 mm) for three different brands, which was signif-
icantly higher (P < 0.001) than the blank samples (Fig. 5A). 
Assuming a uniform distribution of micro-nano plastic particles 
on the surface of the membrane region (SI Appendix, Supplementary 
Note 5), we can make an estimation for the micro-nano plastic 
exposure from bottled water. We estimate that there are about 2.4 
± 1.3 × 105 plastic particles ingested from every liter of bottled 
water measured from different brands(Fig. 5C). Individual parti-
cles of each type of polymer are analyzed separately to reveal chem-
ical heterogeneity. Within the library, PA, PP, PET, PVC, and PS 
are found likely to play a significant role in micro-nano plastics 
exposure from bottled water (Fig. 5B). The exact chemical com-
position of the micro-nano plastics varied from brand to brand, 
but PA seem to be the common major contributors in number 
among all the three brands we analyzed.

Harnessing the linear relationship between SRS intensity and 
the amount of analytes within the focal volume, we are also able 
to provide an estimation of exposure in mass besides particle num-
ber. The mass calibration curve can be estimated for each polymer 
out of density and relative SRS intensity from the linear relation-
ship obtained by standard PS nanospheres (SI Appendix, Fig. S16). 
Integrated intensity within the region of interest for each particle 
is thus converted to mass (Fig. 5 E and F). The estimated 
micro-nano plastic exposure in mass is calculated to be at the level 
of around 10 ng/L. Analyzing the chemical composition in mass, 
we find unneglectable differences between contribution quantified 
by mass and contribution by number. Take the results from Brand 
C as an example. The PS nanoplastics though dominated in  
particle number, only account for a minor portion of the mass. 
Instead, PET becomes the major contributor together in mass. 
Such seeming disparity highlights the potential misunderstanding 
of plastic composition from collective particle characterization, 
which originated from the heterogeneous nature of micro-nano 
plastics from real-world samples.

Morphological characterization of individual particles enabled 
by SRS microscopy directly reveals another dimension of particle 
heterogeneity. Statistical analysis of particle size and shape from 
the images of individual micro-nano particles with well-defined 
identities is reported. When measuring the size distribution, we 
are able to characterize particles below the diffraction limit by 
extrapolating the size from the intensity reading (assuming the 
particles as solid spheres) and by using the linear relationship 
between the volume of the particles and SRS signal as calibration 
(SI Appendix, Supplementary Note 3). As a result, we find that 
plastic particles of different chemical compositions actually have 
different size distribution patterns (Fig. 6 A–G). The direct obser-
vation of the particle heterogeneity here provides a natural expla-
nation of chemical compositional differences observed from mass 
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or number measurement. Take PS and PET as an example: the 
size distribution of PS particles centers around 100 to 200 nm, 
whereas PET particles tend to have a size distribution that nears 
1 to 2 microns, which explains why PET is a more significant 
component when measuring in mass while PS clearly dominates 
when counting the number of particles (Fig. 5 D and F).

The shape is another important morphological feature that 
matters as a critical aspect of nanotoxicity. Studies have shown 
that shape plays a role in determining the cellular uptake of 
micro-nano particles (65, 66). SRS images of plastic particles con-
firmed the existence of shape diversity for micro-nano plastics in 
bottled water. To account for the shape of plastic particles in a 
statistical manner, we measure the aspect ratio of individual par-
ticles above the diffraction limit (Fig. 6H). The aspect ratio is 
widely acknowledged in nanotoxicology studies (67, 68). The 
aspect ratio of the plastic particles detected ranges from 1 to 6, 
and the average aspect ratio for particles is around 1.7. Fig. 6 I–M 
provides a pictorial view of how the aspect ratio is related to the 
particle shape. Particles with an aspect ratio of above 3 are most 
likely to be fibrous in shape, while particles with an aspect ratio 
of below 1.4 will be largely spherical. Shape variation on plastic 
particles has been found in all polymers detected, confirming the 
widely recognized idea that real-world micro-nano plastics have 
diverse morphological prosperities. This dimension is hard to be 
resembled by engineered polymer nanoparticles commonly stud-
ied in research laboratories, and the toxicological consequences 

pertaining to real-life plastic particle exposures and their differing 
physicochemical properties (i.e., size, shape) have yet to be 
determined.

6.  Discussions and Conclusions

By developing the data-driven hyperspectral SRS imaging plat-
form for micro-nano plastic analysis, we describe a methodology 
to improve nanoparticle detection sensitivity and polymer iden-
tification specificity, which has allowed us to start to address the 
long-lasting knowledge gap of nanoplastics. We estimate that the 
exposure to the micro-nano plastics from regular bottled water 
was at the level of 105 particles per liter, which is two to three 
orders of magnitude more than the previously reported results 
merely focusing on microplastics (SI Appendix, Table S4) (58, 59, 
61, 69, 70). As it pertains to the estimation of human exposure, 
these values are substantially higher than those currently reported 
in the literature (56, 71). We attribute these differences to the tiny 
nanoplastic fraction of plastic particulate, which has remained 
invisible to conventional imaging, but in fact, dominates in number 
and accounts for ~90% of the entire population of plastic particles 
detected. The remaining 10% identified as microplastics have a 
concentration of around 3 × 104 particles per liter (SI Appendix, 
Fig. S17), with the majority of them in the size below 2 µm. Larger 
particles (>2 µm), which are easier to identify under regular 
optical microscopy, are in the same order of magnitude as the 

Fig. 3. Detecting micro-nano plastics in bottled water: sample preparation, SRS imaging, and data analysis. (A) Scheme of the filtration setup for collecting 
micro-nano plastic particles from bottled water. The particles from the two bottles of water samples are concentrated onto a circular area (d = 13 mm) at the 
center of the membrane following the procedure described in Supplementary information. (B) Scheme of membrane sandwiching to prepare transparent 
membrane samples for SRS imaging. The obtained sample (Fig. 3C) is then mounted onto the microscope (Fig. 3D) for hyperspectral SRS imaging. (C) The obtained 
transparent membrane sample superimposed with a fluorescence image of the standard fluorescent PS particles collected on the membrane illustrates the 
uniform particle distribution on a circular surface in the center of the membrane (SI Appendix, Supplementary Note 5). (D) Scheme of the SRS microscope. (E) 
Scheme of automated plastic particle identification. The preprocessed stacks of hyperspectral SRS images are analyzed by a Matlab script for automated plastic 
particle identification. For each on-resonance image for the target plastic polymer, detected particles are segmented as regions of interest (ROIs) to extract the 
chemical and morphological information for analysis. The SRS spectrum is extracted in each particle/ROI by intensity measurement across the hyperspectral 
image stack. For particles with SRS peaks in the correct corresponding spectral window, spectral similarity to the target plastic standard is quantified by calculating 
SMCSRS with the threshold condition applied to make the plastic identification judgment. Morphological information such as size and shape is extracted in the 
course of image analysis, and statistical pictures composed by each identified individual plastic particle are created subsequently.
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reported microplastic analysis depending on the detection 
limited reported based on different technologies (SI Appendix, 
Fig. S17 and Table S4). Our results confirm the plastic fragmen-
tation beyond the micron level by unambiguously detecting nan-
oplastics in real-life samples. Similar to many other particle size 
distributions in the natural world, there are substantially more 
nanoplastics, despite being invisible or unidentified under con-
ventional particle imaging techniques, than previously counted 
micron ones. This population of nanoplastics can be easily over-
looked in mass quantification as well since nanoparticles with 
smaller sizes contain cubic-less substances. However, given the 
capability of these nanoplastic particles to cross the biological 
barrier, nanoparticles, despite the seemingly trivial contribution 
to the mass measurement, play a predominant role in terms of 
toxicity evaluation (72, 73).

We also find many detected particles present SRS spectra that 
do not match any of the standards. In fact, our small library of 
seven plastic polymers can only account for roughly about 10% 
of the total particles/dots imaged under SRS microscopy. A similar 
level of identification rate is reported in the microplastic analysis 

in bottled water using vibrational microscopy, indicating the com-
plicated particle composition inside the seemingly simple water 
sample (SI Appendix, Table S4). In this sense, if we assume all 
detected organic particles originate from plastics [the same 
assumption entailed by the quantitative result from SEM-EDX 
or Nile Red staining (19, 74)], the micro-nano plastic concentra-
tion could be as high as 106 particles per liter. However, the com-
mon existence of natural organic matter certainly requires prudent 
distinction from spectroscopy with polymer specificity. Moreover, 
careful investigation of unidentified particles suggests other aspects 
that further increase the complexity of identifying chemical com-
position. For example, some particles exhibit identical features to 
the characteristic two peaks (C=O ester bond: 1,730 cm−1; C=C 
double bond: 1,615 cm−1) of the PET in the fingerprint region 
but present a great variety of vibrational peaks in the high-frequency 
C–H region (SI Appendix, Fig. S8 A–D). It is unlikely for a pol-
ymer material distinct from PET to display both the C=O and 
C=C vibrational signatures that perfectly match the standard PET 
spectrum. A more plausible explanation is that they are small 
heteroaggregates containing PET and other components, with 
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Fig. 4. Individual micro-nano plastic identified for each target polymer from bottled water. (A–G) Representative SRS images of fine plastic particles detected 
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their SRS spectrum being the superposition of the spectrum from 
each component. Indeed, for some larger ones, we can even cap-
ture the spatial chemical heterogeneity within the aggregates 
(SI Appendix, Fig. S8 A, E, and I). The possible formation of het-
eroaggregates between nanoplastics or other natural organic matter 
has long been recognized as a potential challenge in the analysis 
of nanoplastics and may influence toxicological outcomes within 
a biological exposure (11). Direct visualization of such heteroag-
gregates here in real-world samples supports such concerns. For 
other possible heteroaggregates formed without PET, rigorous 
identification will require expanding the spectral library and 
advancing analytical algorithms for SRS microscopy or other 
vibrational imaging techniques with extended spectral windows 
to address challenges imposed by massive particle heterogeneity 
(27, 75, 76).

Another important insight is that the particle size distribution 
varies with the different chemical compositions, suggesting an 
interconnection between particle morphology and chemical  

composition. The observed nonorthogonality between plastic 
composition and particle morphologies challenges the conven-
tional assumption for micro-nano plastics characterization from 
ensemble measurement. Take the result from brand C analysis as 
an example, ensemble measurement of micro-nano plastics might 
suggest that the major substance is PET from compositional anal-
ysis and most of the plastic particles have sizes below 500 nm from 
the morphological analysis. Assuming the two dimensions as being 
independent properties, people might have an impression that 
most of the plastic particles in the bottled water from brand C 
should be PET particles with a size below 500 nm. However, our 
result from single-particle analysis presents a clear disparity: the 
sample turns out to contain a small number of PET particles of 
about micron size and a large number of PS particles with size 
below 500 nm.

Such nonorthogonality might provide valuable information to 
understand, trace, and eventually prevent possible sources of 
micro-nano plastic contamination. Specifically in drinking water 
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production, plastic contamination is confirmed in every step from 
the well to the bottle (77). The discovered size differences among 
different plastic polymers might indicate precious information about 
contamination sources during water production. For example, PET 
and PE, which are used as the packaging material for bottled water 
for all three brands we analyzed, have similar size distribution pat-
terns, with a major population of micron sizes compared to other 
polymers. A possible explanation is that some particles of this kind 
are newly released from the bottle package during transportation or 
storage, which are retained faithfully in the water sample. Whereas, 

other polymers such as PA, PP, PS, and PVC, which are not the 
packaging material but also identified with significant numbers, are 
most likely introduced before or during water production. PP and 
PA, which share the same broad distribution of sizes, are widely used 
as equipment components or coagulant aids in water treatment (78). 
Particularly, PA is the most popular membrane material used in 
reverse osmosis (79), which is a common water purification method 
shared by all three brands. PVC and PS, which have a unique size 
distribution favoring small nanoplastics, might indicate a contami-
nation source even earlier. PVC is identified to be the most abundant 
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polymer type in raw water from microplastic analysis (77). PS is 
known to be used as backbone material for ion exchange resins in 
water purification (80). It is possible large particles of PVC or PS get 
removed by the RO membranes in the later step of the water treat-
ment, leaving mostly nano populations.

Lastly, the interconnection between particle morphology and 
chemical composition has profound implications for toxicolog-
ical concerns. As studies with engineered nanoparticles have 
suggested and investigations of plastic particles are starting to 
indicate, toxicity induced by micro-nano particles is not only 
dose-dependent but also related to particle physicochemical 
characteristics and their effect on cellular interactions and uptake 
(81, 82). In the case of bottled water from brand C, the cyto-
toxicity induced by PS nanoplastics plus a small number of PET 
microplastics would be presumably different from the effect 
assumed from PET nanoparticles. True comprehensive toxicity 
evaluation for micro-nano plastics would require multidimen-
sional characterization of plastic particles and the integration of 
each individual plastic particle regarding their divergent prop-
erties on chemical composition and particle morphologies. 
Single-particle imaging with nanoparticle sensitivity and plastic 
specificity provides indispensable information to address the 
rising toxicity concern. Not only it enables plastic particle pro-
filing with accurate exposure quantification, but also it has a 
unique potential to directly visualize the particle-biology inter-
actions. Therefore, we envision that the data-driven hyperspec-
tral SRS imaging platform will continue bridging the gap of 
knowledge on plastic pollution at the nano level with an 
expanded spectral library to study more complicated biological 
and environmental samples.

7.  Materials and Methods

7.1.  Hyperspectral SRS Microscopy. Hyperspectral SRS imaging is performed 
under a commercial system constructed by sending a dual-output femtosec-
ond laser system (InSight X3, Spectra-Physics) through an integrated Spectral 
Focusing Timing and Recombination Unit (SF-TRU, Newport Corporation) (38) and 

coupled into a multiphoton laser scanning microscope (FVMPE-RS, Olympus). The 
instrumentation and imaging condition are described in detail in SI Appendix.

7.2.  Sample Preparation. PS standards of micro-nanospheres in different sizes 
were bought from Thermo Fisher Invitrogen. Microplastic standards of PET, PP, 
PE, PVC, and PA66 were obtained by crushing sub-cm-sized plastic pallets into 
powders through a freeze mill. Particles suspended in RO water are spread and 
dried on the surface of the coverslip before being embedded with 1% Agarose 
gel prepared with D2O for SRS imaging. Details are described in SI Appendix.

Two bottles of water from the same brand are filtrated through the 0.2-µm pore-
sized Anodisc membrane with carefully cleaned glass apparatuses following the pro-
cedure described in SI Appendix. The harvest membrane is sandwiched according to 
Fig. 3B for SRS imaging. The detailed protocol can be found in SI Appendix.

7.3.  Data Analysis. The methods for SRS-tailored spectral matching algo-
rithms, synthetic data generation, and automated micro-nano plastic detection 
are described in detail in SI  Appendix. The corresponding MATLAB codes are 
available on GitHub through the following link: https://github.com/qnxcarna-
tion/SRS-tailored-Spectral-Matching-algorithm-for-plastic-identification.git.

Data, Materials, and Software Availability. MATLAB code used for simulation, 
spectral matching, and plastic analysis; raw imaging data have been deposited 
in GitHub and Figshare (https://github.com/qnxcarnation/SRS-tailored-Spectral-
Matching-algorithm-for-plastic-identification.git; and https://doi.org/10.6084/
m9.figshare.24635793.v2). All other data are included in the manuscript and/or 
SI Appendix.
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