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The 3-dimensional (3D) modeling of crop canopies is fundamental for studying functional-structural 
plant models. Existing studies often fail to capture the structural characteristics of crop canopies, such 
as organ overlapping and resource competition. To address this issue, we propose a 3D maize modeling 
method based on computational intelligence. An initial 3D maize canopy is created using the t-distribution 
method to reflect characteristics of the plant architecture. The subsequent model considers the 3D 
phytomers of maize as intelligent agents. The aim is to maximize the ratio of sunlit leaf area, and by 
iteratively modifying the azimuth angle of the 3D phytomers, a 3D maize canopy model that maximizes 
light resource interception can be constructed. Additionally, the method incorporates a reflective approach 
to optimize the canopy and utilizes a mesh deformation technique for detecting and responding to leaf 
collisions within the canopy. Six canopy models of 2 varieties plus 3 planting densities was constructed 
for validation. The average R2 of the difference in azimuth angle between adjacent leaves is 0.71, with a 
canopy coverage error range of 7% to 17%. Another 3D maize canopy model constructed using 12 distinct 
density gradients demonstrates the proportion of leaves perpendicular to the row direction increases 
along with the density. The proportion of these leaves steadily increased after 9 × 104 plants ha−1. This 
study presents a 3D modeling method for the maize canopy. It is a beneficial exploration of swarm 
intelligence on crops and generates a new way for exploring efficient resources utilization of crop canopies.

Introduction

The structure of crop canopies plays a crucial role in fulfilling 
the functional requirements of crop production. The morpho-
logical and structural features of crop canopies have always 
been fundamental in the way crop scientists understand, ana-
lyze, and evaluate crops. The structure of crop canopies mean-
ingfully impacts the crop's resource utilization efficiency, yield, 
and stress resistance. The study of crop canopy structure has 
become an integral part of crop cultivation, crop phenomics 
[1,2], and functional-structural plant models (FSPMs) [3,4], 
holding substantial implications for crop ideotype breeding [5], 
high-density planting for increased yield [6,7], and improved 
light efficiency [8].

However, since crop canopy structure exhibits a complex 
spatial distribution, demonstrates pronounced spatial variabil-
ity in organ morphology, and encompasses considerable inter-
nal overlapping and interaction, the canopy formation process 
extends beyond a mere physical replication of individual plants 

[9]. Owing to these constraints and lack of algorithms, technol-
ogy, and a comprehensive technical system, the construction 
of a 3-dimensional (3D) crop canopy model that captures the 
diversity, density, and cultivation management practices has 
posed considerable challenges in this field [10].

With regard to phenotypic data acquisition and analysis of 
crop canopy structure, sensors mounted on drones, such as 
visible light or LiDAR, can be used to gather morphological 
structure data of crop canopies, allowing for the assessment of 
phenotypic indicators like plant height [11], coverage [12], and 
biomass. The top-view images of crop canopies, through seg-
mentation of early-stage images, facilitate the positioning of 
plants within the population [13]. However, due to the consid-
erable distance of drone platforms from the crop canopies, their 
instability, and low imaging resolution, they primarily capture 
the external contour data of the crop canopy, making it difficult 
to acquire high-resolution internal morphological structure 
information. Field-based phenotyping platforms [14] enhance 
the stability and resolution of crop canopy data collection and 
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also provide time-series data of crop canopy growth, thereby 
improving the accuracy of crop canopy structure phenotype 
analysis. For example, Li et al. [15] used a field-based phenotyp-
ing platform to obtain time-series data of crop canopies, and 
through the integration of image and point cloud data, they 
were able to segment plants and organs within the population 
and extract phenotypic parameters such as plant height, leaf 
inclination, and azimuth angles. However, due to the high con-
struction and maintenance costs, limited range of action, and 
difficulty in practical field production application of the phe-
notyping platforms, their use in analyzing the phenotypic struc-
ture of crop canopies remains limited. Xiao et al. [16] achieved 
low-cost acquisition and analysis of 3D point clouds of crop 
canopies through multiangle imaging with low-altitude drones, 
but this stereo vision–based method still fails to address the 
problem of internal overlapping in the population. Solving the 
problem of internal occlusion in plant populations, particularly 
for densely planted plants, is challenging when relying solely 
on measured data. It is essential to combine data with knowl-
edge and solve it through 3D modeling.

In terms of constructing 3D maize canopy model structure, 
electromagnetic digitizers are used to manually obtain 3D coor-
dinate points of each plant and organ within the maize canopy, 
enabling in situ 3D reconstruction. While this method is highly 
accurate and convenient for subsequent applications due to the 
inclusion of semantic information, its efficiency is extremely 
low, making it challenging to realize large-scale canopy 3D 
reconstruction [17]. Multiangle imaging methods, which 
involve acquiring multiangle images of maize canopies using 
drones or manual photography and constructing 3D point 
clouds based on multiangle 3D reconstruction, are mainly suit-
able for 3D reconstruction of maize canopies before ridging or 
in plots with marked spatial separation [16,18]. FSPM-based 
methods [19] integrate maize growth and development models 
with measured data to construct 3D models of maize canopies, 
simulating the 3D structure and photosynthetic production 
material distribution of maize canopies. However, these models 
struggle to reflect differences in plant types and canopy struc-
ture morphology. Statistical plant type–based 3D modeling 
methods for maize canopies involve measuring plant type 
parameters of a few target plants within the population, con-
structing a statistical model of plant type parameters, and com-
bining parametric modeling methods to achieve 3D modeling 
of maize canopies [9]. Such methods can statistically reflect 
morphological differences due to variety plant types and culti-
vation management measures but still fail to capture population 
characteristics like internal overlapping and resource competi-
tion. Interactive modeling methods, despite allowing for adjust-
ments in prebuilt population parameters, require extensive 
manual interaction and are inefficient. Crop population 3D 
models constructed using software like GroIMP struggle to 
reflect variety characteristics and primarily rely on individual 
plant replication. Overall, the construction of 3D models of 
crop populations in practical applications still primarily revolves 
around plant replication [20], and the constructed models 
struggle to reflect characteristics such as resource competition 
and interaction caused by overlapping within the population. 
Details such as the orientation of plants within the population 
and the growth position and orientation of leaves are insuffi-
ciently considered, and the randomness in simulation notice-
ably impacts subsequent calculations such as canopy light 
distribution, hindering the improvement of accuracy in FSPMs.

With the rapid development of computer hardware and 
software, computational intelligence (CI) has advanced rapidly 
in recent years, leveraging large-scale computation to mine 
domain knowledge and develop various new methods for solv-
ing complex problems. CI primarily includes 5 methods: fuzzy 
logic, probabilistic approaches, swarm intelligence, neural net-
works, and evolutionary computation [21]. In agriculture, CI 
has been widely applied in predicting and detecting crop dis-
eases, analyzing soil and climate data, and optimizing crop 
yields. For instance, intelligent decision systems and light detec-
tion technologies allow researchers to predict disease rates and 
thereby improve crop yield productivity [22]. The formation 
of maize canopy structure is a complex process, where organs 
within the population influence each other to compete for more 
resources, exhibiting characteristics of swarm intelligence. 
However, to date, there has been no report of utilizing CI to 
solve the construction of 3D models of maize canopies. The 
leaves in the plant population can be viewed as agents that 
independently adjust their position based on resource competi-
tion and the positional relationship between adjacent organs. 
With this in mind, we aim to incorporate CI into 3D modeling 
of plant canopies.

This paper takes maize canopies as an example and starts 
with the 3D phytomer [23] of maize, using the intelligent com-
putation of the azimuth angles of 3D phytomers within each 
plant in the maize canopy. Through focusing on maximizing 
light interception during key growth stages as the optimization 
goal, we aim to construct an algorithm for 3D modeling of 
maize canopies that can reflect the differences in varieties and 
cultivation management measures.

Materials and Methods

Experimental design and data acquisition
Experimental design
The experiment was conducted in 2022 at the field-based phe-
notyping platform of the Beijing Academy of Agriculture and 
Forestry Sciences (39°56' N, 116°16' E). Two maize varieties, 
Jingnongke728 (JNK728) and Jingke968 (JK968), were selected 
for the study. The plants were sown on 2022 June 15, with plant-
ing densities set at 3, 6, and 9 × 104 plants ha−1, creating a total 
of 6 plots. The row spacing was maintained at 60 cm, oriented 
in an east-west direction. Throughout the whole growth period, 
drip irrigation was employed to ensure adequate water and 
nutrient supply [24].

Data acquisition
Data collection was carried out during the stable phase of maize 
plant structure and canopy formation, specifically during the 
R3 stage (milk stage). This involved utilizing the field-based 
phenotyping platform [14,15] to capture top-view images and 
3D point clouds of each plot, aiding in the verification of maize 
canopy models. Within each plot, a 3 ×3 grid of 9 plants was 
selected for measurement. The azimuth angle of all leaves on 
each plant was recorded to evaluate the simulation results of 
the model. These 9 plants were then relocated indoors for fur-
ther analysis. Using the multiview phenotyping platform MVS-
Pheno [25], multiangle image data were gathered, and plant 
point clouds were generated to extract phenotypic parameters 
of the plants. These parameters served as initial plant architec-
ture inputs for the construction of maize canopy models. 
Finally, a Fastrak (Polhemus, Colchester, VT, USA) 3D digitizer 
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was used to collect 3D phytomer data of the plants, contributing 
to the development of a 3D phytomer database for each variety, 
which was used as a template for the 3D modeling of maize 
canopies [23,26].

3D modeling of maize canopies based on CI
Overview of the method
This methodology comprises 5 key steps (Fig. 1): generation of 
original 3D maize canopy model, computation of the sunlit 
leaf area index, optimization of leaf azimuth angles using CI, 
reflective optimization of canopy structure, and detection and 
response to organ collisions.

1. Generation of original 3D maize canopy model. This ini-
tial phase involves creating a 3D maize canopy model, which 
is based on the 3D phytomer of maize, incorporating a maize 

canopy 3D modeling approach grounded in the t-distribution 
function, and taking into account the row spacing and plant 
numbers in the target maize canopy.

2. Computation of sunlit leaf area index. This step introduces 
a method to calculate the sunlit leaf area index, focusing on 
maximizing direct light resource utilization as the optimization 
target for further calculations.

3. Optimization of leaf azimuth angle using CI. With the 
objective of maximizing the leaf area, this step involves itera-
tive C0 calculations and optimization of the azimuth angles of 
each 3D phytomer within the original maize canopy, culminat-
ing in the formulation of an initially optimized maize canopy 
model C1.

4. Reflective optimization of canopy structure. Following 
the initial optimization, a reflection-based optimization process 

Fig. 1. The complete methodological process. C0: The baseline canopy model for the subsequent iterative computations. C1: The initially optimized maize canopy model based 
on C0. C2: Optimized canopy model based on C1 using reflective approach-based optimization. C3: Optimized canopy model based on C2 by employing detection and response 
to organ collisions method.
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is conducted, focusing on the entirety of the maize canopy, ulti-
mately resulting in the development of a reflected model C2.

5. Detection and response to organ collisions. The final step 
encompasses the refinement of the reflected 3D maize canopy 
model C2, primarily addressing internal organ collisions within 
the canopy and subtly adjusting these structures to enhance 
model realism, thereby leading to the formulation of the ulti-
mate 3D maize canopy model C3.

Generation of original 3D maize canopy model
Building on prior 3D modeling of the maize canopy efforts, 
this study uses established 3D maize phytomers [23] and a 3D 
modeling of the maize canopy approach based on t-distribution 
[9] to develop the original 3D model C0. A 3D maize phytomer 
here refers to a meticulously crafted 3D mesh model including 
components such as leaves, leaf sheaths, nodes, internodes, and 
associated appendages like tassels. These phytomers represent 
the fundamental modular units of maize morphology, exhibit-
ing 3D spatial variability influenced by varietal characteristics, 
phyllotaxy (leaf arrangement), and agronomic practices. The 
t-distribution-based method integrates morphometric data 
from maize (such as height, leaf count, leaf length, leaf inclina-
tion, and azimuth angle) obtained via the MVS-Pheno plat-
form. By using similarity functions, it selects corresponding 
3D phytomer templates, constructing a statistically representa-
tive 3D maize canopy model.

Sunlit leaf area ratio calculation
The capacity to outcompete for light is a critical adaptive strategy 
in crop canopy self-organization and regulation. Emphasizing 
this, maximizing light interception efficiency is posited as the 
primary objective in optimizing the 3D maize canopy model C0. 
Considering the dominance of direct sunlight within the canopy 
and its considerable variability across different heights, leaves, 
and leaf positions (in contrast to the relatively uniform distribu-
tion of diffuse light), the study proposes the sunlit leaf area ratio 
as a pivotal optimization metric.

Given the variability in solar incidence angles across differ-
ent maize-growing regions and throughout the day, the area of 
leaves illuminated by direct sunlight within the canopy fluctu-
ates [8,27]. The optimization goal is thus to maximize the direct 
light interception leaf area under clear sky conditions during 

the grain-filling stage. Using Beijing as a case study, based on 
solar radiation data during clear sky conditions in the grain-
filling stage (Fig. 2A), and considering the considerable varia-
tion in radiation intensity throughout the day, the daylight 
hours are segmented into discrete intervals for computational 
efficiency. For instance, a day is divided into 6 intervals (Fig. 
2B), with each interval assigned a radiation weighting based 
on its specific solar radiation profile. The radiation intensity at 
time t is represented as It, and the total direct sunlight intensity 
for the day is Iall. The radiation weighting for a given moment 
is calculated as follows:

Subsequently, the illuminated leaf area within the canopy at 
each time interval is calculated and aggregated using weighted 
summation, facilitating the computation of the sunlit leaf area 
ratio Sk in the k iteration of 3D modeling of the maize canopy.

To calculate the area of unobstructed triangular facets 
within the 3D phytomers of the maize canopy, these facets need 
to be projected from 3D space onto a 2-dimensional plane at 
varying angles of solar incidence. Initially, a large grid area, 
perpendicular to the solar incidence plane, is established and 
then uniformly divided into m smaller grids. Within each of 
these smaller grids, the triangular facets are sorted based on 
the proximity of their centroid's Z-axis coordinate to the plane. 
The triangular facet closest to the plane in each grid is selected, 
representing the area of the unobstructed triangular facet 
within grid i at time t,Sarea[i, t].

The total leaf area of the canopy is denoted as Sall. After the 
initial establishment of the canopy model, subsequent iterations 
primarily involve adjusting the azimuth angles of the various 
3D phytomers within the canopy; hence, the total leaf area Sall 
remains constant. ωt represents the radiation intensity weight 
at the current moment, and R represent the collection of all 
time points throughout the day. The method for calculating the 
proportion of sunlit leaf area is then defined as follows:

(1)�t =
∫ Tt+2
Tt

Itdt

Iall

(2)Sk =
�

t∈R
�t ×

∑m
i=1 Sarea[i,t]

Sall

Fig. 2. Radiation dynamics and weight proportions in Beijing over a 3-d period. A 3-d average of radiation dynamics in Beijing from 2022 September 1 to 3, used for calculating 
weights (A), a representation of radiation weight proportions across different time intervals (B).
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Optimization of leaf azimuth angle based on CI
The essence of the azimuth angle iteration process is the con-
tinuous counterclockwise rotation of the 3D phytomer mesh 
model around the stem (Z-axis), generating various 3D maize 
canopy models. The process of rotation is illustrated in Fig. 3.

Maize canopy contains multiple plants, each comprising 
several 3D phytomers. Therefore, the sequence of adjusting the 
3D phytomers is crucial. The plant adjustment strategy must 
ensure that all plants are modified while minimizing the impact 
of each plant being adjusted on the already modified plants. To 
achieve this, the following strategy is established to determine 
the order of adjustment for plants and the 3D phytomers within 
them: starting with the first/last plants on the boundary row 
within the planting area, adjust all the plants along the bound-
ary line in a clockwise direction, gradually moving inwards 
until all plants are adjusted (Fig. S1A). At the level of 3D phy-
tomers within plants, due to the vertical growth structure of 
maize, the higher phytomers have a greater shading effect on 
the lower ones. Therefore, the azimuth angle of the highest 
phytomer is set as the reference for adjustments, progressing 
from top to bottom (Fig. S1B), ensuring each layer of phytomers 
receives maximal direct sunlight. Existing prior knowledge 
indicates that the difference between adjacent azimuth angles 
typically ranges between 90° and 270°. This provides a reference 
range for azimuth adjustments, enhancing realism while reduc-
ing computational load during optimization. Each iteration's 
azimuth adjustment is based on the results of the previous 
adjustment.

Beyond the order of iterations, the step size of the azimuth 
angle iteration directly affects the method's precision and com-
putational load. If the step size is too small, the change of Sk 
may be negligible, marked increasing the computational load. 
Conversely, if the step size is too large, the change of Sk may be 

too drastic, hindering the convergence of the iteration process. 
Therefore, after extensive experimental testing and analysis, the 
azimuth angle iteration step size is set to 5°. At this step size, 
each iteration effectively alters the value size without causing 
excessive fluctuations in the projected area, thus preventing 
large oscillations.

The pseudo-code for the entire iterative process is shown 
in the algorithm in Fig. S2. There are 2 ways to terminate the 
iteration during the process. One is by comparing the change 
of Sk with a predefined threshold Qm. If the change of Sk is 
consistently below this threshold over multiple iterations, 
the model is deemed to have converged, and the iteration is 
terminated. The other method sets an upper limit on the 
number of iterations to prevent the algorithm from running 
indefinitely in search of a potentially nonexistent "perfect" 
solution, ensuring that the algorithm completes within a 
reasonable time.

After the aforementioned iterative and optimization pro-
cess, the azimuth angle data of the 3D phytomers at the 
convergence of Sk is taken as the final result. This azimuth 
angle data reflects the optimized state of the 3D maize canopy 
model for maximal direct sunlight interception. The resulting 
model C1 represents an initially optimized 3D maize canopy 
model that more accurately reflects the overall characteristics 
of the maize canopy.

Reflective approach-based optimization
The previously described iterative optimization of leaf azimuth 
angles adjusts individual plants and 3D phytomers within the 
canopy. Although this takes into account the factors of shading 
and avoidance in local areas, it lacks a consideration of the 
overall characteristics of the canopy. To address this, a reflective 
approach, inspired by generative artificial intelligence concepts 

Fig. 3. A schematic of the rotation process, with the red portion indicating the rotating phytomers.
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[28], is introduced to further optimize the overall 3D maize 
canopy model. This approach is a self-adjusting process that 
reflects and adjusts the model's accuracy and effectiveness 
after each simulation. Considering upcoming organ collision 
detection and response, and referencing the dual-scale autom-
aton approach [29], this reflective approach can be seen as an 
optimization of a macro state, while the subsequent organ 
collision detection and response is viewed as a micro-state 
adjustment.

From a holistic perspective of maize canopies, adjustments 
are no longer made simply in order from the top to the bottom 
of the canopy. Instead, a more comprehensive approach is 
taken, where all 3D phytomers within the canopy are sorted 
based on their shading, and quantitative adjustments are made. 
This method allows for higher-level optimization of the 3D 
maize canopy model, better reflecting the overall characteristics 
of the canopy.

Specifically, the process begins by setting the angle of inci-
dent light as vertically downward and using the initially opti-
mized 3D maize canopy model C1 as input. The optimization 
follows these steps:

1. Calculate the area ratio of the shaded part for each 3D 
phytomer.

2. Sort all 3D phytomers based on the proportion of the 
shaded area. This identifies which phytomers are most and least 
likely to be shaded.

3. Select the top 50% of phytomers with the largest shaded 
area for azimuth angle adjustment, ensuring priority adjust-
ment for those most prone to shading. This step also takes into 
account previous overall azimuth angle adjustments to main-
tain consistency and avoid conflicts or redundancy. Each phy-
tomer will have a maximum adjustment threshold of 30°, with 
iterative steps of 2°.

4. During the iteration process, select the azimuth angle data 
that maximizes the sunlit leaf area ratio of the 3D maize canopy 
model for the next round of iteration.

5. The optimization of the canopy model is considered com-
plete when a preset iteration limit is reached or the sunlit leaf 
area ratio of the 3D maize canopy model stabilizes. If these 
conditions are not met, the process returns to the first step, 
using new azimuth angle data for optimization. This reflective 
approach of fine-tuning from a macro perspective ensures a 
more objective and comprehensive optimization of the 3D 
maize canopy model C2, thereby better reflecting the overall 
characteristics of the canopy.

Organ collision detection and response
In actual maize canopies, spatial adjustments occur due to leaf 
collisions, a situation exacerbated by increasing density. This 
issue is also considered in the generated 3D maize canopy 
model. To address this, collision detection and mesh deforma-
tion methods are introduced. Compared with the overall canopy 
perspective C2 described earlier, this step primarily addresses 
the detailed issues at the organ scale, specifically within indi-
vidual 3D phytomers, and is therefore considered a micro-state 
adjustment C3.

Preliminary collision detection is performed using bound-
ing boxes [30]. To expedite the process, the axis-aligned bound-
ing boxes of each maize 3D phytomer are first calculated. If the 
axis-aligned bounding boxes of two 3D phytomers do not 
intersect, then these phytomers do not overlap and cannot col-
lide. If they intersect, the Separating Axis Theorem [31,32] is 

further employed for collision detection, which involves check-
ing whether the projections of the two 3D phytomers overlap 
on all possible axes. A collision is confirmed only if the projec-
tions overlap on all axes.

Upon detecting a collision between two 3D phytomers, a 
mesh deformation method [33] is employed for collision 
response. In actual canopies, leaves farther from the stem are 
more likely to be displaced by external forces upon collision. 
Assuming that a leaf on a 3D phytomer comprises M vein 
points, the first m points near the stem do not deform within 
the unit. The remaining M−m points are used as the driven 
point set for deformation, guided by the vein-driven mesh 
deformation method for leaf deformation. The weights and 
positions of the vein-driven points can be updated using the 
following Eqs. 3 and 4:

In this formula, wi represents the weight value, i is the index 
of the current leaf vein point, nall is the total number of points 
on the leaf of the 3D phytomer, Pori

i
and Pnew

i
 are the coordinates 

of the i-th point before and after the update, Pori
i

 is the original 
position, and doff is the offset. The deformation of the leaf in 
response to a collision is illustrated in Fig. 4A, while Fig. 4B 
and C show comparative images before and after collision 
detection and response in 2 different scenarios.

Evaluating indicators
As this method simulates field maize canopies rather than 
reconstructing them, verifying its effectiveness is crucial. To 
evaluate the method, the following 3 indicators are proposed, 
focusing on the leaf azimuth angle, a key aspect of this study.

As it is difficult to ensure that the orientation of plants in 
the constructed canopy exactly corresponds to actual plants in 
a real community, the difference in azimuth angles of adjacent 
leaves on a plant is used as a relative value to evaluate the azi-
muth angle simulation of the 3D canopy model. If the azimuth 
angle of the i-th leaf on a plant is denoted as φi, then the formula 
for calculating the difference in azimuth angles of adjacent 
leaves on a plant ∆φi is as follows:

With increased planting density in maize, competition for 
light resources intensifies, and one plasticity approach is the 
directional adjustment of leaf azimuth. Therefore, to qualita-
tively validate the accuracy of the 3D modeling of the maize 
canopy, the proportion of leaves oriented perpendicular to the 
row direction in maize plants at different densities is evaluated 
[33,34]. If the total number of phytomers is Nall, and the num-
ber of phytomers with azimuth angles (assuming the row direc-
tion is north-south) between 60° and 120° is Nvert, then the 
formula for calculating the proportion p of leaf azimuth angles 
perpendicular to the row direction is as follows:

 

(3)wi

{
0, 0≤ i≤m

(i−m)∕nall, m< i≤M

(4)Pnew
i = Pori

i + wi × doff

(5)Δ�i =
||�i+1 − �i

||

(6)p =
(

Nvert∕Nall

)

× 100%
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Canopy coverage is the percentage of the crop canopy's 
vertical projection area on the ground relative to the total 
area of the assessment region. It quantifies the density of 
vegetation and reflects the growth status of the vegetation 
[35,36]. Canopy coverage is used as the third evaluation 
indicator.

Results

Visualization of the 3D canopy models
Utilizing the CI-based 3D modeling method for maize cano-
pies, 3D models of 6 plots for the JNK728 and JK968 varieties 
were constructed at densities of 3, 6, and 9 ×104 plants ha−1. 
The planting strategy of each plot includes 25 plants arranged 
in a 5 × 5 grid, with a row spacing of 60 cm, as illustrated in 
Fig. S3.

The visualization effects of the 6 maize canopies C3 con-
structed using the method presented in this paper are shown 
in Fig. 5. With increasing planting density, the space between 
plants becomes narrower, leading to more pronounced shading 
between them. The visualization results indicate that plants on 
the edges of the canopy, experiencing less shading, have a simi-
lar and more dispersed distribution of external leaf azimuth 
angles across different densities within the same variety. This 
reflects the method's ability to capture the marginal effects in 
maize canopies. Additionally, internal leaves within the canopy 
adjust their azimuth angles to compete for more light resources 
as the density increases.

Validation results
Validation of differences in leaf azimuth angles between 
adjacent leaves on individual plants
Since the field canopy includes azimuth angle data for 9 plants, 
and the model generated data for 25 plants, the 9 central plants 
of the model were selected as a control canopy. The differences 
in azimuth angles of adjacent leaves on plants in the maize 
canopy ∆φi were compared and analyzed, with results shown 
in Fig. 6. The results indicate that the difference in azimuth 

angles of adjacent leaves in original 3D maize canopy model 
C0, compared to the measured data, were not well represented 
and were more dispersed. In contrast, the optimized 3D maize 
canopy model C2 showed a certain degree of consistency with 
the measured data. The R2 for the 6 canopies were 0.70, 0.73, 
0.80, 0.66, 0.64, and 0.73, respectively. This suggests that the 
3D maize canopy model constructed using this method can 
more accurately simulate the distribution pattern of the differ-
ences in adjacent leaf azimuth angles on plants within field 
maize canopies.

For the JNK728 and JK968 varieties in the 6 plots, the dif-
ferences in adjacent leaf azimuth angles in the original 3D 
canopy model C0, constructed using the t-distribution, showed 
substantial randomness, with a consistency R2 of around 0.2 
compared to the measured data. After optimization of the 
canopy model C1 using the presented method, the R2 improved 
from below 0.2 to above 0.6, particularly for the JNK728 variety 
at 9 × 104 plants ha−1, reaching as high as 0.79. Moreover, after 
applying the reflective approach, all plot models C2 saw a slight 
increase in R2, with the JNK728 variety at 9 × 104 plants ha−1 
showing an accuracy improvement to above 0.8. This indicates 
the effectiveness of the reflective approach in enhancing model 
precision (Fig. 7).

Canopy coverage validation
Top-view images of each plot were obtained using the rail-based 
phenotyping platform, and canopy coverage was extracted for 
evaluating the accuracy of the community characteristics of 
the constructed 3D models, as shown in Fig. 8. With increas-
ing planting density, the canopy coverage data for both variet-
ies increased, consistent with actual canopy conditions. The 
JNK728 variety had smaller canopy coverage errors across all 
planting densities, with the smallest error of 7% at 9 × 104 plants 
ha−1. The errors for the JK968 variety at the same densities were 
higher than those for JNK728 but did not exceed 17%. The 
overall lower canopy coverage values in the 3D models com-
pared to those extracted from images could be partly attributed 
to the presence of weeds and fallen leaves on the actual field, 

Fig. 4. Schematic of organ collision response. The mesh deformation of the leaf (A), with the blue part representing the leaf before deformation and the green part after, the 
results before and after collision deformation of maize leaves from different plants (B), the outcomes before and after collision deformation optimization of leaves at different 
growth heights within the same plant (C), with the upper image showing the state before optimization and the lower image after.
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Fig. 5. The front and top views of the 3D maize canopy models of C3 in different varieties and densities constructed using the proposed method. The angle of view is perpendicular 
to the row direction.
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which would increase the measured canopy coverage. As the 
maize canopy matures, its lower leaves eventually detach from 
the main stem and fall to the ground. In a 3D model, these fallen 

leaves are not accurately represented. Top-view imagery may 
capture fallen leaves and weeds as part of the canopy coverage, 
inflating the image-based measurement.

Fig. 6. Comparative results of the differences in azimuth angles of adjacent leaves between the 3D models of maize canopy constructed under different varieties and planting 
densities and the actual maize canopy in the field. The comparison results between the azimuth angle differences of adjacent leaves on maize plants in 3D canopy models (C0, 
C2) of different varieties and densities and those in actual field canopies. (A to C) are of JNK728 and (D to F) are of JK968 in different planting densities.
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Proportion of leaf azimuth angles perpendicular to the  
row direction
The distribution proportions of leaf azimuth angles in the 6 
constructed maize canopies are shown in Fig. 9. For the JNK728 
variety, at a density of 3 × 104 plants ha−1, the distribution of 
plant azimuth angles within the canopy was relatively balanced, 
with the proportion p near 90° reaching 37.8%. At 6 × 104 plants 
ha−1, this proportion p slightly decreased to 35.6%, and at 9 × 
104 plants ha−1, p increased to 40.2%. For the JK968 variety, at 
3 × 104 plants ha−1, the proportion p near 90° was 24.7%; how-
ever, this proportion p marked increased to 50.5% at 6 × 104 
plants ha−1 and further rose to 56.9% at 9 ×104 plants ha−1.

From these observations, despite the more dispersed leaf 
azimuth angles in the JNK728 and JK968 varieties at lower 
densities, both varieties exhibited an increasing trend in the 
proportion of leaf orientation toward 90° as planting density 

increased. This phenomenon suggests that, in response to 
the environmental stress of high-density planting, leaves of 
both varieties tend to grow more perpendicular to the row 
direction.

Maize canopy modeling for gradient  
planting densities
Since our method can simulate the variation of leaf azimuth 
angles within maize canopies under different planting densi-
ties, we referenced the density stress experiment conducted by 
Wang et al. [37] in Qitai, Xinjiang, China (43°29′N, 89°28′E), 
and used the 3D leaf template of maize variety [17] Xianyu335 
to construct 3D maize canopy models across a density gradient. 
The canopies were planted following maize densities ranging 
from 1.5 to 18 × 104 plants ha−1, with an incremental step of 
1.5 × 104 plants ha−1, resulting in a total of 12 different density 

Fig. 7. The changes in the differences in adjacent leaf azimuth angles in the original model C0, the algorithm-optimized model C1, and the reflective approach-enhanced model C2.

Fig. 8. The comparison of the measured and simulated canopy coverage.
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plots. The planting patterns were based on alternate row spac-
ings of 70 and 40 cm, representing wide and narrow rows, 
respectively.

Using our method, we constructed twelve 3D maize canopy 
models and analyzed the distribution of azimuth angles of 
plants at each density (Fig. 10). The results revealed that up to 
a planting density of 9 × 104 plants ha−1, the azimuth angle 
distribution of maize plants exhibited fluctuations and random-
ness. However, as the density surpassed this threshold, the 
overall azimuth angle gradually stabilized and tended toward 
90°, i.e., perpendicular to the row direction. This trend is highly 
consistent with actual field observations of maize canopies. At 
lower planting densities, the competition for light resources 
among maize canopies is not intense, leading to a more random 
distribution of plants. Nevertheless, as plant density increases, 
to maximize the utilization of limited light resources, maize 
leaves adaptively adjust their distribution to be as perpendicular 
as possible to the row direction, thereby receiving more light. 
From a top-down perspective, one can visually observe how, 
at different planting densities, the distribution of maize cano-
pies gradually becomes more ordered and aligned perpendicu-
lar to the row direction.

Computational efficiency of the method
The entire computation process was conducted on a desktop 
computer equipped with an Intel i5-12700 CPU, 16GB RAM, 
and an NVIDIA GeForce RTX 3060 Ti GPU. Each iteration 
took approximately 12.33 s, and on average, it took about 7 h 
to complete the construction of a 3D model C3 for a canopy 
containing 25 plants. The original construction based on 3D 
phytomers takes up 2% of the time. Following this, the process 
moves to initially optimizing the 3D maize canopy model using 
CI, which accounts for a consequential 75% of the timeline. 
Subsequently, the focus shifts to involving the reflection-based 
optimization of the 3D maize canopy model, occupying 20% 

of the time. Finally, the project is dedicated to collision detec-
tion and response, comprising the remaining 3% of the overall 
duration.

The core of 3D simulation of maize canopies based on CI 
focuses on the iterative process of optimizing and calculating 
the sunlit leaf area ratio index Sk by adjusting the azimuth 
angles of the 3D phytomers. The objective is to progressively 
bring Sk closer to its theoretical optimal value. To illustrate the 
computation process, Fig. 11 shows the trend of changes in Sk 
with the number of iterations across 6 plots. The graph reveals 
that all 3D maize canopy models exhibit local fluctuations and 
an overall increasing trend during the optimization process, 
gradually stabilizing as the number of iterations increases. This 
aligns with the algorithm's design goal of finding the maximum 
convergent value of Sk. The calculated value of Sk for all canopy 
models fluctuates during the optimization process because 
changes in azimuth angle do not always guarantee an increase 
in Sk. Thus, Sk may experience minor fluctuations throughout 
the iterative process.

Additionally, there are distinct differences in the iterative 
process for the JNK728 and JK968 varieties at various planting 
densities. For instance, the JNK728 variety requires the fewest 
iterations at the highest planting density, while it needs the most 
iterations at medium planting density. Conversely, the JK968 
variety requires the least number of iterations to converge at 
the highest planting density, but the most at the lowest planting 
density.

Discussion

Intelligent methods for efficient utilization of light 
resources in crop canopies
Canopies represent an organizational structure for life and 
production in extensive agricultural fields. The formation of 
these canopies is influenced by various factors such as planting 

Fig. 9.  Distribution maps of leaf azimuth angles for JK968 and JNK728 at different planting densities.
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density, varietal characteristics, environmental factors, and 
cultivation practices. Within these canopies, there is an abun-
dance of morphological structures formed due to competition 
for resources among plants and their organs. This includes 
competition for water and nutrients by the root system and 
competition for light by the canopy leaves. Depicting this com-
petition for resources within crop canopies is one of the chal-
lenges in agricultural science research.

Crop canopies can be considered as intelligent entities. 
However, research on swarm intelligence algorithms related to 

crops is scarce. For instance, inspired by the evolutionary 
behaviors of natural plant communities, researchers have devel-
oped a new type of wireless sensor network localization algo-
rithm [38]. This algorithm mimics the processes of plant seeding, 
growth, and fruition, optimizing the accuracy of network node 
positioning through mathematical models, showing better adapt-
ability and iterative effects than traditional algorithms. Zlobin 
et al. [39] proposed an algorithm to assess the vitality of indi-
vidual plants, capable of analyzing and predicting the survival 
status of species within specific plant communities, providing 

Fig. 10. The visualization of the 12 planting density-gradient 3D maize canopy models and the characteristic distribution of leaf azimuth angles perpendicular to the row 
direction in each canopy. The center figure describes the proportion of leaf azimuth angles perpendicular to the row direction.

Fig. 11. The dynamic curves of Sk for different varieties and planting densities during the iterative process.

D
ow

nloaded from
 https://spj.science.org at N

anjing A
gricultural U

niversity on M
arch 21, 2024

https://doi.org/10.34133/plantphenomics.0160


Wu et al. 2024 | https://doi.org/10.34133/plantphenomics.0160 13

crucial decision support for plant growth conditions. Additionally, 
Wang et al. [40] applied carnivorous plant predatory behaviors 
in algorithm design, introducing a method for solving the travel-
ing salesman problem, which has shown consequential results 
in maintaining population diversity and improving solution 
quality.

However, there are currently few swarm intelligence algo-
rithms specifically aimed at crops. Classic swarm intelligence 
algorithms, such as Particle Swarm Optimization, simulate the 
behavior of bird flocks to optimize spatial occupancy, while 
Ant Colony Optimization mimics ant foraging principles for 
path optimization. There is a lack of swarm intelligence algo-
rithms focused on resource competition in crops. The primary 
idea of swarm intelligence is that each intelligent agent within 
the canopy achieves optimization and decision-making through 
mutual perception and computation. This study, focusing on 
the above-ground canopy structure of maize communities, 
proposes a 3D modeling algorithm for maize canopies. The 
core idea is that the 3D phytomers within the maize canopy are 
intelligent agents, and by intelligently adjusting their azimuth 
angles, the canopy captures more light, ultimately constructing 
3D maize canopy models under different varieties, densities, 
and environmental conditions. This method can be considered 
a swarm intelligence algorithm aimed at efficient utilization of 
resources in 3D space, offering new perspectives for research 
on efficient resource utilization in crop canopies.

Improvement for the construction of 3D maize 
canopy models
The 3D model of crop populations is a crucial component in 
the calculation of crop canopy light distribution based on 3D 
visualization, serving as an essential link between crop struc-
ture and function. The 3D model of crop populations greatly 
impacts subsequent calculations of canopy light distribution 
and photosynthetic productivity. Taking maize canopies as an 
example, the position of a leaf in the upper part of the canopy 
directly affects whether multiple organs in the lower part of the 
canopy can intercept direct sunlight. Currently, maize organs 
and plants can be accurately modeled in 3D through multiangle 
imaging or 3D scanning [25]. However, when generating 3D 
maize canopy models using actual measured plants, a random 
placement approach is still adopted [20,41]. To improve the 
consistency of 3D maize canopy models with actual field popu-
lations, the growth positions and orientations of plants within 
the population are determined through top-view images of the 
canopy, combined with the t-distribution method to integrate 
variety plant type information, thereby enhancing the consis-
tency of 3D maize canopy models with actual field populations 
to some extent [9]. However, this method of constructing 3D 
maize canopy models struggles to present population charac-
teristics caused by interorgan overlapping and resource com-
petition within the population.

Based on our previous work, this paper proposes a 3D mod-
eling of the maize canopy method aimed at efficient utilization 
of light resources. It optimizes the 3D maize canopy model by 
iteratively calculating each 3D phytomer within the population, 
combined with a reflective approach and collision detection 
and response. Given the high workload and low efficiency of 
high-precision acquisition of maize canopy 3D data [17], and 
the insufficient precision and automation level in maize canopy 
phenotypic analysis [15], this method enhances the mechanistic 

nature of 3D maize canopy model construction to some extent 
and can present the azimuth angle variation characteristics of 
maize canopies at different densities. Although there is still a 
difference between the constructed 3D maize canopy model 
and the actual field population, preventing a 1:1 3D reconstruc-
tion, it can still reflect population characteristics to a certain 
degree, thus promoting the construction of 3D maize canopy 
models and FSPMs research. For instance, this method con-
structs 3D models of maize populations with varying densities 
by obtaining the 3D plant architecture of maize varieties and 
combining the light environment of different eco-regions. The 
model considers the competition of organs within the popula-
tion for light resources and the adjustment of positions caused 
by cross occlusion between organs, instead of using randomly 
copied individual plants. This method can be used for calculat-
ing canopy light distribution, radiation use efficiency, and crop 
production with population characteristics.

Limitations and future work
This method relies on a maize 3D phytomer template library 
to reflect the variety characteristics of maize. Additionally, the 
computational efficiency of the method is relatively low. To 
narrow the iteration range, it is necessary to integrate more 
prior knowledge about maize morphological structure during 
the optimization process and incorporate relevant algorithms 
to enhance the intelligence level of the optimization process. 
The structure of crop populations is complex and influenced 
by many factors. This method has only considered light inter-
ception. Future work should integrate more maize canopy 
phenotypic information, maize growth knowledge models, 
and photosynthesis models. It is also essential to consider a 
wider range of environmental factors to improve the accuracy 
and practicality of the model.
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