Newswise — New results from the Dark Energy Survey (DES) use the largest-ever sample of galaxies observed over nearly one-eighth of the sky to produce the most precise measurements to date of the Universe’s composition and growth. 

DES images the night sky using the 570-megapixel Dark Energy Camera on the National Science Foundation’s Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory (CTIO) in Chile, a Program of NSF’s NOIRLab. One of the most powerful digital cameras in the world, the Dark Energy Camera was designed specifically for DES. It was funded by the Department of Energy (DOE) and was built and tested at DOE's Fermilab.

Over the course of six years, from 2013 to 2019, DES used 30% of the time on the Blanco Telescope and surveyed 5000 square degrees — almost one-eighth of the entire sky — in 758 nights of observation, cataloging hundreds of millions of objects. The results announced today draw on data from the first three years — 226 million galaxies observed over 345 nights — to create the largest and most precise maps yet of the distribution of galaxies in the Universe at relatively recent epochs. The DES data were processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

"NOIRLab is a proud host for and member of the DES collaboration," said Steve Heathcote, CTIO Associate Director. "Both during and after the survey, the Dark Energy Camera has been a popular choice for community and Chilean astronomers." 

At present the Dark Energy Camera is used for programs covering a huge range of science including cosmology. The Dark Energy Camera science archive, including DES Data Release 2 on which these results are based, is curated by the Community Science and Data Center (CSDC), a Program of NSF’s NOIRLab. CSDC provides software systems, user services, and development initiatives to connect and support the scientific missions of NOIRLab’s telescopes, including the Blanco telescope at CTIO. 

Since DES studied nearby galaxies as well as those billions of light-years away, its maps provide both a snapshot of the current large-scale structure of the Universe and a view of how that structure has evolved over the past 7 billion years.

Ordinary matter makes up only about 5% of the Universe. Dark energy, which cosmologists hypothesize drives the accelerating expansion of the Universe by counteracting the force of gravity, accounts for about 70%. The last 25% is dark matter, whose gravitational influence binds galaxies together. Both dark matter and dark energy remain invisible. DES seeks to illuminate their nature by studying how the competition between them shapes the large-scale structure of the Universe over cosmic time. 

To quantify the distribution of dark matter and the effect of dark energy, DES relied mainly on two phenomena. First, on large scales galaxies are not distributed randomly throughout space but rather form a weblike structure that is due to the gravity of dark matter. DES measured how this cosmic web has evolved over the history of the Universe. The galaxy clustering that forms the cosmic web in turn revealed regions with a higher density of dark matter.

Second, DES detected the signature of dark matter through weak gravitational lensing. As light from a distant galaxy travels through space, the gravity of both ordinary and dark matter in the foreground can bend its path, as if through a lens, resulting in a distorted image of the galaxy as seen from Earth. By studying how the apparent shapes of distant galaxies are aligned with each other and with the positions of nearby galaxies along the line of sight, DES scientists were able to infer the clumpiness of the dark matter in the Universe.

To test cosmologists’ current model of the Universe, DES scientists compared their results with measurements from the European Space Agency’s orbiting Planck observatory. Planck used light known as the cosmic microwave background to peer back to the early Universe, just 400,000 years after the Big Bang. The Planck data give a precise view of the Universe 13 billion years ago, and the standard cosmological model predicts how the dark matter should evolve to the present.

Combined with earlier results DES provides the most powerful test of the current best model of the Universe to date, and the results are consistent with the predictions of the standard model of cosmology. However, hints remain from DES and several previous galaxy surveys that the Universe today is a few percent less clumpy than predicted [1].

Ten regions of the sky were chosen as “deep fields” that the Dark Energy Camera imaged repeatedly throughout the survey. Stacking those images together allowed the scientists to glimpse more distant galaxies. The team then used the redshift information from the deep fields to calibrate the rest of the survey region. This and other advancements in measurements and modeling, coupled with a threefold increase in data compared to the first year, enabled the team to pin down the density and clumpiness of the Universe with unprecedented precision.

DES concluded its observations of the night sky in 2019. With the experience gained from analyzing the first half of the data, the team is now prepared to handle the complete dataset. The final DES analysis is expected to paint an even more precise picture of the dark matter and dark energy in the Universe. 

The DES collaboration consists of over 400 scientists from 25 institutions in seven countries.

“The collaboration is remarkably young. It’s tilted strongly in the direction of postdocs and graduate students who are doing a huge amount of this work,” said DES Director and spokesperson Rich Kron, who is a Fermilab and University of Chicago scientist. “That’s really gratifying. A new generation of cosmologists are being trained using the Dark Energy Survey.

The methods developed by the team have paved the way for future sky surveys such as the Rubin Observatory Legacy Survey of Space and Time. "DES shows that the era of big survey data has well and truly begun,” notes Chris Davis, NSF’s Program Director for NOIRLab. “DES on NSF’s Blanco telescope has set the scene for the remarkable discoveries to come with Rubin Observatory over the coming decade.

Notes

[1] For more information, see the scientific paper Planck 2018 Results. VI. Cosmological Parameters.

More information

The recent DES results will be presented in a scientific seminar on 27 May 2021. Twenty-nine papers are available on the arXiv online repository and from the Dark Energy Survey website. The main paper is Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing.

NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSFNRC–CanadaANID–ChileMCTIC–BrazilMINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (in cooperation with DOE’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawaiʻi, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have to the Tohono O'odham Nation, to the Native Hawaiian community, and to the local communities in Chile, respectively.

The Dark Energy Survey is a collaboration of more than 400 scientists from 25 institutions in seven countries. For more information about the survey, please visit the experiment’s website.

Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, Funding Authority for Funding and Projects in Brazil, Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro, Brazilian National Council for Scientific and Technological Development and the Ministry of Science and Technology, the German Research Foundation and the collaborating institutions in the Dark Energy Survey.

NCSA at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers and students together to solve grand challenges at rapid speed and scale. For more information, please visit www.ncsa.illinois.edu.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A US Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Links

 

Estudio de Energía Oscura revela la mirada más precisa de la evolución del Universo

Los primeros tres años de recopilación de datos del estudio, utilizaron observaciones de 226 millones de galaxias en un octavo del cielo

En un total de 29 publicaciones científicas, el Estudio de Energía Oscura examinó los mapas más grandes realizados de la distribución y forma de las galaxias, extendiéndose por más de 7 mil millones de años luz a través del Universo. El extraordinario y preciso análisis, que incluyó datos de los tres primeros años del estudio, contribuye poderosamente a ratificar el modelo cosmológico estándar como el mejor modelo del Universo. Sin embargo, aún quedan indicios que la materia en el Universo actual es un poco menos aglomerada que lo previsto.

Los nuevos resultados del Estudio de Energía Oscura (DES, por sus siglas en Inglés) utilizan la muestra más grande de galaxias observadas, en casi un octavo del cielo, para producir las mediciones más precisas hasta la fecha de la composición y la expansión del Universo.

DES toma imágenes del cielo nocturno usando la Cámara de Energía Oscura (DECam) de 570 megapíxeles instalada en el Telescopio Víctor M. Blanco de 4 metros de la Fundación Nacional de Ciencias de Estados Unidos en Cerro Tololo (CTIO) en Chile, un programa de NOIRLab de NSF y Observatorio AURA. DECam es una de las cámaras digitales más poderosas del mundo, y fue diseñada específicamente para el Estudio de Energía Oscura. Fue financiado por el Departamento de Energía de Estados Unidos (DOE) y fue construido y probado en Fermilab del DOE.

En el transcurso de seis años, de 2013 a 2019, DES utilizó el 30% del tiempo del Telescopio Blanco y examinó 5.000 grados cuadrados -casi un octavo de todo el cielo- en 758 noches de observación, catalogando cientos de millones de objetos. Los resultados anunciados hoy se basan en datos de los primeros tres años (226 millones de galaxias observadas durante 345 noches) para crear los mapas más grandes y precisos hasta ahora de la distribución de galaxias en el Universo en épocas relativamente recientes. Los datos de DES se procesaron en el National Center for Supercomputing Applications de la Universidad de Illinois en Urbana-Champaign.

"NOIRLab es un anfitrión orgulloso y miembro de la colaboración DES", señaló Steve Heathcote, Director Asociado de Cerro Tololo. "Tanto durante como después de la investigación, la Cámara de Energía Oscura ha sido una opción muy requerida por la comunidad y los astrónomos chilenos".

En la actualidad, la Cámara de Energía Oscura se utiliza para investigaciones que cubren una amplia gama de ciencias, incluida la cosmología. El archivo científico de la Cámara de Energía Oscura, que incluye el “DES Data Release 2”, en el que se basan estos resultados, está controlada por el Centro de Datos para la Comunidad Científica (CSDC, por su sigla en Inglés), un programa del NOIRLab de NSF. Este Centro de Datos, proporciona sistemas de software, servicios de usuario e iniciativas de desarrollo para conectar y apoyar las misiones científicas de los telescopios de NOIRLab, incluido el telescopio Blanco en Cerro Tololo.

Dado que DES estudió las galaxias cercanas, y las de miles de millones de años luz de distancia, sus mapas brindan una imagen instantánea de la actual estructura a gran escala del Universo y una mirada de cómo esa estructura ha evolucionado durante los últimos 7 mil millones de años.

La materia ordinaria constituye sólo alrededor del 5% del Universo. La energía oscura, que los cosmólogos plantean como hipótesis que impulsa la expansión acelerada del Universo al contrarrestar la fuerza de la gravedad, representa aproximadamente el 70%. El restante 25% es materia oscura, cuya influencia gravitacional une a las galaxias. Tanto la materia oscura como la energía oscura permanecen invisibles. DES busca iluminar su naturaleza mediante el estudio de cómo la competencia entre ellos da forma a la estructura a gran escala del Universo a lo largo del tiempo cósmico.

Para cuantificar la distribución de la materia oscura y el efecto de la energía oscura, DES se basó principalmente en dos fenómenos. Primero, las galaxias a gran escala no se distribuyen aleatoriamente por el espacio, sino que forman una estructura en forma de red que se debe a la gravedad de la materia oscura. El Estudio, midió cómo ha evolucionado esta red cósmica a lo largo de la historia del Universo. Los cúmulos de galaxias que forman la red cósmica, a su vez revelaron regiones con una mayor densidad de materia oscura.

En segundo lugar, DES detectó la marca de la materia oscura a través de lentes gravitacionales débiles. A medida que la luz de una galaxia distante viaja a través del espacio, la gravedad producida tanto de la materia común como la de la oscura en primer plano puede doblar su camino, como si estuviéramos viendo a través de un lente, dando como resultado una imagen distorsionada de la galaxia vista desde la Tierra. Al estudiar cómo las formas aparentes de las galaxias distantes se alinean entre sí y compararlas con las posiciones de las galaxias cercanas en el campo de observación, los científicos del DES pudieron inferir la aglomeración de la materia oscura en el Universo.

Para probar el modelo actual del Universo, los científicos de DES compararon sus resultados con las mediciones del observatorio espacial Planck de la Agencia Espacial Europea. Planck utilizó la luz conocida como fondo cósmico de microondas para mirar hacia el Universo primitivo, a sólo 400.000 años después del Big Bang. Los datos de Planck entregan una visión precisa del Universo hace 13 mil millones de años, y el modelo cosmológico estándar predice cómo debería evolucionar la materia oscura hasta el presente.

Combinado con resultados anteriores, DES proporciona los resultados más poderosos del mejor y actual modelo del Universo hasta la fecha, y los resultados son consistentes con las predicciones del modelo estándar de cosmología. Sin embargo, quedan indicios de DES y de varios estudios de galaxias anteriores de que el Universo actual es un pequeño porcentaje menos aglomerado de lo previsto [1].

Se eligieron diez regiones del cielo como "campos profundos" que la Cámara de Energía Oscura tomó imágenes repetidamente durante el estudio. Combinar esas imágenes permitió a los científicos vislumbrar galaxias más distantes. Luego, el equipo utilizó la información del corrimiento al rojo de los campos profundos para calibrar el resto de la región de la investigación. Este y otros avances en las mediciones y el modelado, junto con un aumento de tres veces en los datos en comparación con el primer año, permitieron al equipo precisar la densidad y aglomeración del Universo con una precisión sin precedentes.

DES concluyó sus observaciones del cielo nocturno en 2019. Con la experiencia obtenida al analizar la primera mitad de los datos, el equipo ahora está preparado para manejar el conjunto de datos completo. Se espera que el análisis final de DES pinte una imagen aún más precisa de la materia oscura y la energía oscura en el Universo.

La colaboración DES consta de más de 400 científicos de 25 instituciones en siete países.

La colaboración está notablemente compuesta principalmente por jóvenes científicos, con una fuerte participación de posdoctorados y estudiantes de posgrado los cuales están produciendo una gran cantidad de trabajo”, señaló el director y portavoz del DES, Rich Kron, científico del Fermilab y de la Universidad de Chicago. "Eso es realmente gratificante. Se está capacitando a una nueva generación de cosmólogos utilizando el Dark Energy Survey ".

Los métodos desarrollados por el equipo han allanado el camino para futuros estudios del cielo, como el Estudio del Legado para el Espacio y Tiempo del telescopio Vera C. Rubin. "DES muestra que la era de los grandes datos ha comenzado", señala Chris Davis, director de programa de NSF para NOIRLab. "El Estudio de Energía Oscura en el telescopio Blanco de NSF prepara el escenario para los notables descubrimientos que se realizarán con Rubin durante la próxima década", concluyó.

Notas

[1] Para más información, por favor revisar la publicación científica Planck 2018 Results. VI. Cosmological Parameters.

Más Información

Los resultados recientes de DES serán presentados en un seminario científico el 27 de mayo de 2021. Un total de 29 artículos científicos están disponibles en el repositorio en línea “arXiv” y en el sitio web de Dark Energy Survey. El artículo principal se titula: Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing.

NOIRLab de NSF (Laboratorio Nacional de Investigación en Astronomía Óptica-Infrarroja de NSF), el centro de EE. UU. para la astronomía óptica-infrarroja en tierra, opera el Observatorio internacional Gemini (una instalación de NSFNRC–CanadaANID–ChileMCTIC–BrasilMINCyT–Argentina y KASI – República de Corea), el Observatorio Nacional Kitt Peak (KPNO), el Observatorio Interamericano Cerro Tololo (CTIO), el Centro de Datos para la Comunidad Científica (CSDC) y el Observatorio Vera C. Rubin (en cooperación con el National Accelerator Laboratory (SLAC) del Departamento de Energía de Estados Unidos (DOE) . Está administrado por la Asociación de Universidades para la Investigación en Astronomía (AURA) en virtud de un acuerdo de cooperación con NSF y tiene su sede en Tucson, Arizona. La comunidad astronómica tiene el honor de tener la oportunidad de realizar investigaciones astronómicas en Iolkam Du’ag (Kitt Peak) en Arizona, en Maunakea, en Hawai, y en Cerro Tololo y Cerro Pachón en Chile. Reconocemos y apreciamos el importante rol cultural y la veneración que estos sitios tienen para la Nación Tohono O’odham, para la comunidad nativa de Hawai y para las comunidades locales en Chile, respectivamente.

El Estudio de Energía Oscura es una colaboración de más de 400 científicos de 25 instituciones diferentes de siete países. Para mayor información sobre el estudio, por favor visite el sitio web del experimento.

El financiamiento de los Proyectos DES han sido provistos por el Departamento de Energía de Estados Unidos; la Fundación Nacional de Ciencia de Estados Unidos, el Ministerio de Ciencia de España, el  Science and Technology Facilities Council del Reino Unido;  el Higher Education Funding Council for England; el National Center for Supercomputing Applications de la Universidad de Illinois en Urbana-Champaign; el Kavli Institute of Cosmological Physics en la Universidad de Chicago; la Autoridad de Financiamiento para Fundaciones y Proyectos en Brasil; la Fundación Carlos Chagas Filho para al Apoyo a la Investigación del Estado de Rio de Janeiro; el Consejo Nacional para el Desarrollo Científico y Tecnológico de y el Ministerio de Ciencia y Tecnología; La Fundación Alemana de Investigación y las instituciones colaboradoras en el Estudio de Energía Oscura (Dark Energy Survey).

NCSA en la Universidad de Illinois en Urbana-Champaign provee supercomputadoras y recursos digitales avanzados para el emprendimiento científico de la nación. En NCSA, la facultad de la Universidad de Illinois, el personal, los estudiantes y los colaboradores alrededor del mundo, utilizan avanzados recursos digitales para abordar los grandes desafíos de la investigación por el beneficio de la ciencia y de la sociedad. NCSA ha avanzado un tercio de Fortune 50® por más de 30 años al reunir a la industria, investigadores y estudiantes para resolver grandes desafíos con rapidez. Para más información visite www.ncsa.illinois.edu.

Fermilab es el principal laboratorio nacional de Estados Unidos para la física de partículas y para la investigación de aceleradores. Fermilab, un laboratorio de la Oficina de Ciencias del Departamento de Energía de los Estados Unidos, se ubica cerca de Chicago, Illinois, y es operado bajo contrato por la Fermi Research Alliance LLC. Visite el sitio web de Fermilab en www.fnal.gov y síganos en Twitter en @Fermilab.

La Oficina de Ciencias de DOE es el mayor patrocinador de la investigación de base en las ciencias físicas de los Estados Unidos y trabaja para abordar algunos de los desafíos más urgentes de nuestro tiempo. Para mayor información visite science.energy.gov.

Enlaces

 

Journal Link: Planck 2018 Results. VI. Cosmological Parameters

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Planck 2018 Results. VI. Cosmological Parameters