Research Alert

The use of solid electrolytes in lithium batteries promises to increase their power and energy density, but several challenges still need to be overcome. One critical issue is capacity-fading, commonly ascribed to various degradation reactions in the composite cathode. Chemical, electrochemical as well as chemo-mechanical effects are discussed to be the cause, yet no clear understanding of the mechanism of capacity fading is established. In this work, a model is proposed to interpret the low-frequency impedance of the cathode in terms of lithium diffusion within an ensemble of LiNi1−x−yCoxMnyO2 (NCM) cathode active material particles with different particle sizes. Additionally, an electrochemical technique is developed to determine the electrochemically active mass in the cathode, based on the estimation of the state-of-charge via open circuit potential-relaxation. Tracking the length of lithium diffusion pathways and active mass over 40 charge-discharge cycles demonstrates that the chemo-mechanical evolution in the composite cathode is the major cause for cell capacity fading. Finally, it is shown that single-crystalline NCM is far more robust against chemo-mechanical degradation compared to polycrystalline NCM and can maintain a high cycling stability.

This Editors’ Choice article is open access and available fully in the link below.