Newswise — In the April 2018 issue of SLAS Technology, Breitwieser and colleagues of the Karlsruhe Institute of Technology (Germany) describe a fully automated high-throughput sorting system for zebrafish embryo phenotypes that benefits high-throughput screening by saving time and improving accuracy.

The new sorting system is based on a modular robot and an image analysis system comprising two cameras with different magnification lenses and fields of view.

One camera is used to detect clustered objects and isolated embryos, whereas the second camera is used for identifying phenotypes by means of computer-based image analysis. Subsequently, the embryos are transferred by the robot from a Petri dish into the wells of a 96-well microplate. Zebrafish embryo mutants that exhibit a glucocorticoid deficiency are detected reliably and separated from wild type embryos, and the system can easily be extended to sort phenotypes with other morphological features.

Large numbers of genetically modified embryos are needed in research for toxicology testing, drug screening, developmental biology studies and cancer research. Manual sorting of larger numbers of embryos under the microscope is a tedious task and prone to errors. 

* * * * *

Fully Automated Pipetting Sorting System for Different Morphological Phenotypes of Zebrafish Embryos can be accessed for free (for a limited time) at For more information about SLAS and its journals, visit

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY: 2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY: 2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo. 

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas). 

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).