Abstract: Early mouse development is characterized by structural and epigenetic changes at the chromatin level while cells progress towards differentiation. At blastocyst stage, the segregation of the three primordial lineages is accompanied by establishment of differential patterns of DNA methylation and post-translational modifications of histones, such as H3K27me3. In this study, we have analysed the dynamics of H3K27me3 at pericentromeric heterochromatin (PCH) during development of the mouse blastocyst, in comparison with cultured embryonic cells. We show that this histone modification is first enriched at PCH in the whole embryo and evolves into a diffuse distribution in epiblast during its specification and maturation. Concomitantly, the level of transcription from major satellite decreases. Stem cells derived from blastocyst (naïve ESCs and TSCs) do not fully maintain the H3K27me3 enrichment at PCH. Moreover, the dynamic of H3K27me3 at PCH during in vitro conversion from naïve to primed pluripotent state and during ESCs derivation suggests that the mechanisms underlying the control of this histone mark at PCH are different in embryo and in vitro. We also conclude that the non-canonical presence of H3K27me3 at PCH is a defining feature of embryonic cells in the young blastocyst before epiblast segregation.
Journal Link: Scientific Reports Other Link: Download PDF Other Link: Google Scholar