Research Alert


Bronchopulmonary dysplasia (BPD) is not merely a chronic lung disease, but a systemic condition with multiple organs implications predominantly associated with hyperoxia exposure. Despite advances in current management strategies, limited progress has been made in reducing the BPD-related systemic damage. Meanwhile, although the protective effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) or their exosomes on hyperoxia-induced lung injury have been explored by many researchers, the underlying mechanism has not been addressed in detail, and few studies have focused on the therapeutic effect on systemic multiple organ injury.


To investigate whether hUC-MSC intratracheal administration could attenuate hyperoxia-induced lung, heart, and kidney injuries and the underlying regulatory mechanisms.


Neonatal rats were exposed to hyperoxia (80% O2), treated with hUC-MSCs intratracheal (iT) or intraperitoneal (iP) on postnatal day 7, and harvested on postnatal day 21. The tissue sections of the lung, heart, and kidney were analyzed morphometrically. Protein contents of the bronchoalveolar lavage fluid (BALF), myeloperoxidase (MPO) expression, and malondialdehyde (MDA) levels were examined. Pulmonary inflammatory cytokines were measured via enzyme-linked immunosorbent assay. A comparative transcriptomic analysis of differentially expressed genes (DEGs) in lung tissue was conducted via RNA-sequencing. Subsequently, we performed reverse transcription-quantitative polymerase chain reaction and western blot analysis to explore the expression of target mRNA and proteins related to inflammatory and oxidative responses.


iT hUC-MSCs administration improved pulmonary alveolarization and angiogenesis (P < 0.01, P < 0.01, P < 0.001, and P < 0.05 for mean linear intercept, septal counts, vascular medial thickness index, and microvessel density respectively). Meanwhile, treatment with hUC-MSCs iT ameliorated right ventricular hypertrophy (for Fulton’s index, P < 0.01), and relieved reduced nephrogenic zone width (P < 0.01) and glomerular diameter (P < 0.001) in kidneys. Among the beneficial effects, a reduction of BALF protein, MPO, and MDA was observed in hUC-MSCs groups (P < 0.01, P < 0.001, and P < 0.05 respectively). Increased pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-1β, and IL-6 expression observed in the hyperoxia group were significantly attenuated by hUC-MSCs administration (P < 0.01, P < 0.001, and P < 0.05 respectively). In addition, we observed an increase in anti-inflammatory cytokine IL-10 expression in rats that received hUC-MSCs iT compared with rats reared in hyperoxia (P < 0.05). Transcriptomic analysis showed that the DEGs in lung tissues induced by hyperoxia were enriched in pathways related to inflammatory responses, epithelial cell proliferation, and vasculature development. hUC-MSCs administration blunted these hyperoxia-induced dysregulated genes and resulted in a shift in the gene expression pattern toward the normoxia group. hUC-MSCs increased heme oxygenase-1 (HO-1), JAK2, and STAT3 expression, and their phosphorylation in the lung, heart, and kidney (P < 0.05). Remarkably, no significant difference was observed between the iT and iP administration.


iT hUC-MSCs administration ameliorates hyperoxia-induced lung, heart, and kidney injuries by activating HO-1 expression and JAK/STAT signaling. The therapeutic benefits of local iT and iP administration are equivalent.

Key Words: Mesenchymal stem cell, Hyperoxia, Multiple organ injury, Bronchopulmonary dysplasia, Heme oxygenase-1, JAK/STAT pathway


Core Tip: In the present study, we used a newborn rat model of postnatal hyperoxia exposure to simulate clinical bronchopulmonary dysplasia (BPD) and the associated heart and kidney injuries in preterm infants. Improved lung, heart, and kidney development, as well as reduced inflammatory and oxidative responses, were observed with human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) administration. We demonstrated that hUC-MSCs ameliorate hyperoxia-induced systemic organ injuries by activating heme oxygenase-1 expression and JAK/STAT pathway. Overall, our study shows that intratracheal administration is a more attractive route of MSCs administration in preterm infants for the prevention and treatment of BPD and hyperoxia-induced systemic damage.

Journal Link: Publisher Website Journal Link: Download PDF

Register for reporter access to contact details

Publisher Website; Download PDF