X
  • Extremely flexible hydrogel particles that resemble red blood cells in size and shape. To date, attempts to create effective red blood cell mimics have been limited because synthetic particles tended to be quickly filtered out of the circulatory system due to their stiffness. In testing, these flexible particles remained in circulation up to 30 times longer than stiffer ones. Image courtesy Timothy J. Merkel and Joseph M. DeSimone, University of North Carolina at Chapel Hill.
    Extremely flexible hydrogel particles that resemble red blood cells in size and shape. To date, attempts to create effective red blood cell mimics have been limited because synthetic particles tended to be quickly filtered out of the circulatory system due to their stiffness. In testing, these flexible particles remained in circulation up to 30 times longer than stiffer ones. Image courtesy Timothy J. Merkel and Joseph M. DeSimone, University of North Carolina at Chapel Hill.
  • Synthetic red blood cell mimics, shown releasing from an adhesive film into a drop of solvent. The particles were manufactured using PRINT (Particle Replication in Non-wetting Templates) technology, which allows scientists to produce micro- and nanoparticles with customized dimensions and properties. Image courtesy Timothy J. Merkel and Joseph M. DeSimone, University of North Carolina at Chapel Hill.
    Synthetic red blood cell mimics, shown releasing from an adhesive film into a drop of solvent. The particles were manufactured using PRINT (Particle Replication in Non-wetting Templates) technology, which allows scientists to produce micro- and nanoparticles with customized dimensions and properties. Image courtesy Timothy J. Merkel and Joseph M. DeSimone, University of North Carolina at Chapel Hill.
Chat now!
2.05726