X
  • These images produced by X-ray scattering analysis show the normal tropoelestin molecule (in green), the genetically modified version created by the researchers (in magenta), and a combined view to emphasize the areas where the two versions differ. The team found that the modified version was significantly weaker than the natural version, and used this analysis to help understand the way these molecules move and self-assemble to form elastin, an important body tissue with very elastic properties.
    Courtesy of the researchers
    These images produced by X-ray scattering analysis show the normal tropoelestin molecule (in green), the genetically modified version created by the researchers (in magenta), and a combined view to emphasize the areas where the two versions differ. The team found that the modified version was significantly weaker than the natural version, and used this analysis to help understand the way these molecules move and self-assemble to form elastin, an important body tissue with very elastic properties.
Chat now!