X
  • Polymer chemist Samantha Nowak recently joined Brookhaven Lab's Center for Functional Nanomaterials as a postdoctoral researcher studying polymer self-assembly. Here, she holds silicon wafers containing block copolymer thin films. In front of her is a plasma etch tool, which she uses to remove the domains of one of the
    Brookhaven National Laboratory
    Polymer chemist Samantha Nowak recently joined Brookhaven Lab's Center for Functional Nanomaterials as a postdoctoral researcher studying polymer self-assembly. Here, she holds silicon wafers containing block copolymer thin films. In front of her is a plasma etch tool, which she uses to remove the domains of one of the "blocks," or polymers, in the block copolymer. This removal is part of a process that helps Nowak better see the nanoscale self-assembled patterns (using a scanning electron microscope) formed by the block copolymer.
  • A block copolymer consists of different molecule chains (indicated by the blue and red lines above) linked together.
    A block copolymer consists of different molecule chains (indicated by the blue and red lines above) linked together.
  • An illustration of the three-dimensional gyroid structure. This geometric configuration is found in butterfly wings and elsewhere in nature.
    An illustration of the three-dimensional gyroid structure. This geometric configuration is found in butterfly wings and elsewhere in nature.
  • Atomic force microscope images of a sugar-polyolefin conjugate ultrathin film (30 nanometers) at room temperature that the Sita Research Group heated to 140 degrees Fahrenheit for different lengths of time: (a) original ultrathin film, (b) after 14 hours, (c) a zoomed-in region corresponding to the white square in (b), (d) after 24 hours, (e) zoomed-in region corresponding to the white square in (d), and (f) after 48 hours. The images reveal how the morphology evolves in response to heating over time.
    Journal of the American Chemical Society 2017, 139, 5281–5284.
    Atomic force microscope images of a sugar-polyolefin conjugate ultrathin film (30 nanometers) at room temperature that the Sita Research Group heated to 140 degrees Fahrenheit for different lengths of time: (a) original ultrathin film, (b) after 14 hours, (c) a zoomed-in region corresponding to the white square in (b), (d) after 24 hours, (e) zoomed-in region corresponding to the white square in (d), and (f) after 48 hours. The images reveal how the morphology evolves in response to heating over time.
  • Samantha Nowak (front row, left) recently joined the Center for Functional Nanomaterials as a postdoctoral researcher in the Electronic Nanomaterials Group, led by Kevin Yager (back row, second from right).
    Brookhaven National Laboratory
    Samantha Nowak (front row, left) recently joined the Center for Functional Nanomaterials as a postdoctoral researcher in the Electronic Nanomaterials Group, led by Kevin Yager (back row, second from right).
  • Conventionally, block copolymers self-assemble into a limited range of morphologies, such as spheres and lamellae. But by using appropriate block copolymer blends and a chemically patterned substrate that contains the
    Brookhaven National Laboratory
    Conventionally, block copolymers self-assemble into a limited range of morphologies, such as spheres and lamellae. But by using appropriate block copolymer blends and a chemically patterned substrate that contains the "instructions" for which morphologies appear where, scientists can significantly expand this range. Nowak, Yager, and other CFN scientists recently obtained four different nanostructures—dots, lines, horizontal lamellae, and hexagonally perforated lamellae—in predetermined regions of a single substrate.
Chat now!