X
  • Showing their stripes: Brookhaven Lab physicists present new evidence that stripes—alternating areas of charge and magnetism in certain copper-oxide materials—are good for forming the charge-carrier pairs needed for electrical current to flow with no resistance. Left to right: Qiang Li, Genda Gu, John Tranquada, Alexei Tsvelik, and Yangmu Li in front of an image of wind-blown ripples in desert sand.
    Showing their stripes: Brookhaven Lab physicists present new evidence that stripes—alternating areas of charge and magnetism in certain copper-oxide materials—are good for forming the charge-carrier pairs needed for electrical current to flow with no resistance. Left to right: Qiang Li, Genda Gu, John Tranquada, Alexei Tsvelik, and Yangmu Li in front of an image of wind-blown ripples in desert sand.
  • This image represents the stripes of magnetism and charge in the cuprate (copper and oxygen) layers of the superconductor LBCO. Gray shading represents the modulation of the charge (
    This image represents the stripes of magnetism and charge in the cuprate (copper and oxygen) layers of the superconductor LBCO. Gray shading represents the modulation of the charge ("holes," or electron vacancies), which is maximized in stripes that separate areas of magnetism, indicated by arrows representing alternating magnetic orientations on adjacent copper atoms.
  • Copper-oxide layers of LBCO (the lanthanum-barium layers would be between these). 3-D superconductivity occurs when current can flow freely in any direction within and between the copper-oxide layers, while 2-D superconductivity exists when current moves freely only within the layers (not perpendicular). The perpendicular orientations of stripe patterns from one layer to the next may be part of what inhibits movement of current between layers.
    Copper-oxide layers of LBCO (the lanthanum-barium layers would be between these). 3-D superconductivity occurs when current can flow freely in any direction within and between the copper-oxide layers, while 2-D superconductivity exists when current moves freely only within the layers (not perpendicular). The perpendicular orientations of stripe patterns from one layer to the next may be part of what inhibits movement of current between layers.
  • A phase diagram of LBCO at different temperatures and magnetic field strengths. Colors represent how resistant the material is to the flow of electrical current, with purple being a superconductor with no resistance. When cooled to near absolute zero with no magnetic field, the material acts as a 3-D superconductor. As the magnetic field strength goes up, 3-D superconductivity disappears, but 2-D superconductivity reappears at higher field strength, then disappears again. At the highest fields, resistance grew, but the material retained some unusual metallic conductivity, which the scientists interpreted as an indication that charge-carrier pairs might persist even after superconductivity is destroyed.
    A phase diagram of LBCO at different temperatures and magnetic field strengths. Colors represent how resistant the material is to the flow of electrical current, with purple being a superconductor with no resistance. When cooled to near absolute zero with no magnetic field, the material acts as a 3-D superconductor. As the magnetic field strength goes up, 3-D superconductivity disappears, but 2-D superconductivity reappears at higher field strength, then disappears again. At the highest fields, resistance grew, but the material retained some unusual metallic conductivity, which the scientists interpreted as an indication that charge-carrier pairs might persist even after superconductivity is destroyed.
Chat now!