X
  • An illustration of a Monte Carlo simulation, where a calculation is run billions of times in slightly different ways  to arrive at a range of possible results (far right), which are then averaged to determine the exact result. Each colored line represents a different run. A study at SLAC and Stanford used Monte Carlo simulations to make the first unbiased observations of a phenomenon called ‘strange metallicity’ in a model that describes correlated materials, where electrons join forces to produce unexpected phenomena such as superconductivity. (Greg Stewart/SLAC National Accelerator Laboratory).
    Greg Stewart/SLAC National Accelerator Laboratory
    An illustration of a Monte Carlo simulation, where a calculation is run billions of times in slightly different ways to arrive at a range of possible results (far right), which are then averaged to determine the exact result. Each colored line represents a different run. A study at SLAC and Stanford used Monte Carlo simulations to make the first unbiased observations of a phenomenon called ‘strange metallicity’ in a model that describes correlated materials, where electrons join forces to produce unexpected phenomena such as superconductivity. (Greg Stewart/SLAC National Accelerator Laboratory).
close
0.65158