New vulnerability found in major human viruses

Structural feature may lead to antivirals for the common cold, polio, and other pathogens

4-Jun-2019 2:05 PM EDT

PLOS

Add to Favorites


  • newswise-fullscreen New vulnerability found in major human viruses

    Credit: James Geraets

    This image shows a small molecule drug (highlighted) in its binding pocket on a target picornavirus capsid (Coxsackievirus B3), as determined by cryo-electron microscopy. The electrostatics of the virus capsid surface are shown as a magenta-cyan spectrum.

EMBARGO: June 11, 2019 11 AM Pacific / 2 PM Eastern Time

Newswise — Discovery of a new feature of a large class of pathogenic viruses may allow development of new antiviral medications for the common cold, polio, and other illnesses, according to a new study publishing June 11 in the open-access journal PLOS Biology by Rana Abdelnabi and Johan Neyts of the University of Leuven, Belgium, and James Geraets and Sarah Butcher of the University of Helsinki and their colleagues.

Picornaviruses include rhinoviruses and enteroviruses. Rhinoviruses cause millions of cases of upper respiratory infections (“colds”) yearly and contribute to asthma, and enteroviruses are responsible for millions of infections including cases such as meningitis, encephalitis and polio. There are currently no antivirals that can be used for the treatment or prevention of any of the rhino- or enteroviruses.

To replicate, viruses must interact with host cells, and in doing so, often need to change shape; stabilizing the virus particle is therefore thought to be a promising strategy for preventing replication. In a search for potential antiviral candidates, the authors found a compound that stabilized a model picornavirus. They performed cryo-electron microscopy (cryo-EM) of the drug-virus complex to determine how the drug exerted its effect. Cryo-EM involves combining thousands of two-dimensional images to develop a highly detailed three-dimensional image of the target.

Although picornaviruses have been studied for decades, the authors discovered a previously unknown pocket, or indentation, on the surface of the virus, in which the compound had lodged, thereby stabilizing it against the kind of shape change that would allow interaction with host cells. The team then used the compound as a starting point to generate multiple variants of the antiviral molecule to maximize the activity against a broad range of picornaviruses.

A major challenge in developing antiviral medications is that viruses mutate quickly, changing in ways that make a once-useful drug ineffective. While it is possible that the newly-discovered pocket may also mutate to make picornaviruses resistant to therapies developed against them, the authors suggest the pocket may be crucial enough for viral replication that viruses containing mutant versions may be less viable, making the drug relatively “resistance-proof.”

Further work to develop these compounds into effective drugs is ongoing. “These results open up a new avenue for the design of broad-spectrum antivirals against rhinoviruses and enteroviruses, both of which are major human pathogens,” Neyts said.

#####

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000281

Press-only preview: https://plos.io/2I7ZbRQ

Contact: Johan Neyts, johan.neyts@kuleuven.be

Citation: Abdelnabi R, Geraets JA, Ma Y, Mirabelli C, Flatt JW, Domanska A, et al. (2019) A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. PLoS Biol 17(6): e3000281. https://doi.org/10.1371/journal.pbio.3000281

Funding: This work was funded by the BELVIR project from BELSPO (IUAP), People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement number 612308 AIROPico (to SJB and JN), a postdoctoral mandate Internal Fund from KU Leuven (PDM/17/178 to RA), a Fellowship from China Scholarship Council (CSC) (grant number 201406040056 to YM), Academy of Finland (275199 to SJB), and Sigrid Juselius Foundation (to SJB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

SEE ORIGINAL STUDY


Comment/Share

Chat now!
1.17141