Newswise — In a new study, researchers found that the PFAS chemical GenX suppresses the neutrophil respiratory burst – the method white blood cells known as neutrophils use to kill invading pathogens. The study is an important first step in understanding how both legacy and emerging PFAS chemicals might affect the body’s innate immune system.

PFAS are a class of per- and polyfluoroalkyl chemicals used to make consumer and industrial products more resistant to water, stains and grease. According to the U.S. Environmental Protection Agency, there are more than 12,000 known PFAS, which also include fluoroethers such as GenX.

“It’s pretty well-established that PFAS are toxic to the adaptive immune system, but there hasn’t been as much research done on their effects on the innate immune system,” says Drake Phelps, former Ph.D, student at North Carolina State University and first author of the study.

The human immune system has two branches: adaptive and innate. The adaptive branch contains T cells and B cells that “remember” pathogens the body has encountered, but it is slow to mount a defense, acting days – sometimes weeks – after it detects a pathogen.

The innate immune system serves as the body’s first responders, and contains white blood cells that can be dispatched to the site of an invasion within hours. These white blood cells include neutrophils, which can dump reactive oxygen species – think tiny amounts of bleach or hydrogen peroxide that neutrophils manufacture inside their cells – directly onto pathogens, killing them. That process is called the respiratory burst.

Drake and the research team looked at the effect of nine environmentally relevant legacy and emerging PFAS on neutrophils from zebrafish embryos, neutrophil-like cells (cells that can be chemically treated to behave like neutrophils), and human neutrophil cells cultured from donor blood.

Emerging PFAS are chemicals, like GenX, developed to replace older, legacy PFAS that had proven toxic. All of the PFAS included in this study were detected in both the Cape Fear River and the blood serum of residents whose drinking water came from the Cape Fear River.

The embryos and cells were exposed to 80 micromolar solutions of each chemical:
perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid potassium salt (PFOS-K), perfluorononanoic acid (PFNA), perfluorohexanoic acid (PFHxA), perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), 7H-perfluoro-4-methyl-3,6-dioxa-octane sulfonic acid (Nafion byproduct 2), and perfluoromethoxyacetic acid sodium salt (PFMOAA-Na).

Of the nine PFAS tested, only GenX suppressed the neutrophil respiratory burst in embryonic zebrafish, neutrophil-like cells, and human neutrophils. PFHxA also suppressed the respiratory burst, but only in embryonic zebrafish and neutrophil-like cells.

The researchers caution that while the results of this preliminary study are interesting, they raise more questions than they answer.

“The longest chemical exposure in our study was four days, so obviously we can’t compare that to real human exposure of four decades,” says Jeff Yoder, professor of comparative immunology at NC State and corresponding author of the work. “We looked at a high dose of single PFAS over a short period, whereas people in the Cape Fear River basin were exposed to a mixture of PFAS – a low dose over a long period.

“So while we can say that we see a toxic effect from a high dose in the cell lines, we can’t yet say what effects long-term exposure may ultimately have on the immune system. This paper isn’t the end of the road – it’s the first step. Hopefully our work may help prioritize further study of these two chemicals.”

The study appears in the Journal of Immunotoxicology and was supported by the National Institute of Environmental Health Sciences (NIEHS), the North Carolina State University Center for Environmental and Health Effects of PFAS, and the North Carolina State University Center for Human Health and the Environment (CHHE). Jamie DeWitt, professor of pharmacology and toxicology at East Carolina University, is co-author.

-peake-

Note to editors: An abstract follows.

“Legacy and Emerging Per- and Polyfluoroalkyl Substances Suppress the Neutrophil Respiratory Burst”

DOI10.1080/1547691X.2023.2176953

Authors: Drake W. Phelps, Anika I. Palekar, Haleigh E. Conley, Giuliano Ferrero, Jacob H. Driggers, Keith E. Linder, Seth W. Kullman, David M. Reif, M. Katie Sheats, Jeffrey A. Yoder, North Carolina State University; Jamie DeWitt, East Carolina University
Published: Feb. 15, 2023 in Journal of Immunotoxicology

Abstract:
Per- and polyfluoroalkyl substances (PFASs) are used in a multitude of processes and products, including non-stick coatings, food wrappers, and fire-fighting foams. These chemicals are environmentally-persistent, ubiquitous, and can be detected in the serum of 98% of Americans. Despite evidence that PFASs alter adaptive immunity, few studies have investigated their effects on innate immunity. The report here presents results of studies that investigated the impact of nine environmentally-relevant PFASs [e.g., perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid potassium salt (PFOS-K), perfluorononanoic acid (PFNA), perfluorohexanoic acid (PFHxA), perfluorohexane sulfonic acid (PFHxS), perfluorobutane sulfonic acid (PFBS), ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), 7H-perfluoro-4-methyl-3,6-dioxa-octane sulfonic acid (Nafion byproduct 2), and perfluoromethoxyacetic acid sodium salt (PFMOAA-Na)] on one component of the innate immune response, the neutrophil respiratory burst. The respiratory burst is a key innate immune process by which microbicidal reactive oxygen species (ROS) are rapidly induced by neutrophils in response to pathogens; defects in the respiratory burst can increase susceptibility to infection. The study here utilized larval zebrafish, a human neutrophil-like cell line, and primary human neutrophils to ascertain whether PFAS exposure inhibits ROS production in the respiratory burst. It was observed that exposure to PFHxA and GenX suppresses the respiratory burst in zebrafish larvae and a human neutrophil-like cell line. GenX also suppressed the respiratory burst in primary human neutrophils. This report is the first to demonstrate that these PFASs suppress neutrophil function and supports the utility of employing zebrafish larvae and a human cell line as screening tools to identify chemicals that may suppress human immune function.

 

Journal Link: Journal of Immunotoxicology