Abstract: This study deals with cellulose derivatives in relation to the collagen fibrils in composite collagen-cellulose scaffolds for soft tissue engineering. Two types of cellulose, i.e., oxidized cellulose (OC) and carboxymethyl cellulose (CMC), were blended with collagen (Col) to enhance its elasticity, stability and sorptive biological properties, e.g. hemostatic and antibacterial features. The addition of OC supported the resistivity of the Col fibrils in a dry environment, while in a moist environment OC caused a radical drop. The addition of CMC reduced the mechanical strength of the Col fibrils in both environments. The elongation of the Col fibrils was increased by both types of cellulose derivatives in both environments, which is closely related to tissue like behaviour. In these various mechanical environments, the ability of human adipose-derived stem cells (hADSCs) to adhere and proliferate was significantly greater in the Col and Col/OC scaffolds than in the Col/CMC scaffold. This is explained by deficient mechanical support and loss of stiffness due to the high swelling capacity of CMC. Although Col/OC and Col/CMC acted differently in terms of mechanical properties, both materials were observed to be cytocompatible, with varying degrees of further support for cell adhesion and proliferation. While Col/OC can serve as a scaffolding material for vascular tissue engineering and for skin tissue engineering, Col/CMC seems to be more suitable for moist wound healing, e.g. as a mucoadhesive gel for exudate removal, since there was almost no cell adhesion.
Journal Link: Research Square Other Link: Download PDF Other Link: Google Scholar