Research Alert

BACKGROUND

Immature dendritic cells (imDCs) play an important role in the induction of donor-specific transplant immunotolerance. However, these cells have limitations, such as rapid maturation and a short lifespan in vivo. In previous studies, induced pluripotent stem cells (iPSCs) differentiated into imDCs, and sinomenine (SN) was used to inhibit the maturation of imDCs.

AIM

To study the capacity of SN to maintain iPSC-derived imDCs (SN-iPSCs-imDCs) in an immature state and the mechanism by which SN-iPSCs-imDCs induce immunotolerance.

METHODS

In this study, mouse iPSCs were induced to differentiate into imDCs in culture medium without or with SN (iPSCs-imDCs and SN-iPSCs-imDCs). The imDC-related surface markers, endocytotic capacity of fluorescein isothiocyanate-Dextran and apoptosis were analyzed by flow cytometry. The effects of iPSCs-imDCs and SN-iPSCs-imDCs on T-cell stimulatory function, and regulatory T (Treg) cell proliferative function in vitro were analyzed by mixed lymphocyte reaction. Cytokine expression was detected by ELISA. The apoptosis-related proteins of iPSCs-DCs and SN-iPSCs-DCs were analyzed by western blotting. The induced immunotolerance of SN-iPSCs-DCs was evaluated by treating recipient Balb/c skin graft mice. Statistical evaluation of graft survival was performed using Kaplan–Meier curves.

RESULTS

Both iPSCs-imDCs and SN-iPSCs-imDCs were successfully obtained, and their biological characteristics and ability to induce immunotolerance were compared. SN-iPSCs-imDCs exhibited higher CD11c levels and lower CD80 and CD86 levels compared with iPSCs-imDCs. Reduced major histocompatibility complex II expression, worse T-cell stimulatory function, higher Treg cell proliferative function and stronger endocytotic capacity were observed with SN-iPSCs-imDCs (P < 0.05). The levels of interleukin (IL)-2, IL-12, interferon-γ in SN-iPSCs-imDCs were lower than those in iPSCs-imDCs, whereas IL-10 and transforming growth factor-β levels were higher (P < 0.05). The apoptosis rate of these cells was significantly higher (P < 0.05), and the expression levels of cleaved caspase3, Bax and cleaved poly(ADP-ribose) polymerase were higher after treatment with lipopolysaccharides, but Bcl-2 was reduced. In Balb/c mice recipients immunized with iPSCs-imDCs or SN-iPSCs-imDCs 7 d before skin grafting, the SN-iPSCs-imDCs group showed lower ability to inhibit donor-specific CD4+ T-cell proliferation (P < 0.05) and a higher capacity to induce CD4+CD25+FoxP3+ Treg cell proliferation in the spleen (P < 0.05). The survival span of C57bl/6 skin grafts was significantly prolonged in immunized Balb/c recipients with a donor-specific pattern.

CONCLUSION

This study demonstrated that SN-iPSCs-imDCs have potential applications in vitro and in vivo for induction of immunotolerance following organ transplantation.

Key Words: Immature dendritic cells, Induced pluripotent stem cells, Sinomenine, Immune tolerance, Organ transplantation

 

Core Tip: Immature dendritic cells (imDCs) play an important role in the induction of donor-specific transplant immune tolerance. However, these cells have limitations, such as rapid maturation and a short lifespan. This study focused on exploring sinomenine (SN) to promote differentiation of induced pluripotent stem cells (iPSCs) into imDCs (SN-iPSCs-imDCs), and found SN-iPSCs-imDCs with worse donor-specific T-cell stimulatory function, and higher regulatory T-cell proliferative function in vitro and in vivo to induce high immune tolerance. It provided a new idea for the application of the combination of traditional Chinese medicine and modern new technologies in transplantation immunity.



Journal Link: Publisher Website Journal Link: Download PDF

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Publisher Website; Download PDF