Abstract

The evolutionarily conserved RNA helicase DDX6 is a central player of post-transcriptional regulation, but its role during embryogenesis remains elusive. We here demonstrated that DDX6 enables proper cell lineage specification from pluripotent cells by analyzing Ddx6 KO mouse embryos and in vitro epiblast-like cell (EpiLC) induction system. Our study unveiled a great impact of DDX6-mediated RNA regulation on signaling pathways. Deletion of Ddx6 caused the aberrant transcriptional upregulation of the negative regulators of BMP signaling, which accompanied with enhanced Nodal signaling. Ddx6 / pluripotent cells acquired higher pluripotency with a strong inclination toward neural lineage commitment. During gastrulation, abnormally expanded Nodal expression in the primitive streak likely promoted endoderm cell fate specification while inhibiting mesoderm development. We further clarified the mechanism how DDX6 regulates cell fate determination of pluripotent cells by genetically dissecting major DDX6 pathways: processing body (P-body) formation, translational repression, mRNA decay, and miRNA-mediated silencing. P-body-related functions were dispensable, but the miRNA pathway was essential for the DDX6 function. DDX6 may prevent aberrant transcriptional upregulation of the negative regulators of BMP signaling by repressing translation of certain transcription factors through the interaction with miRNA-induced silencing complexes (miRISCs). Overall, this delineates how DDX6 affects development of the three primary germ layers during early mouse embryogenesis and the underlying mechanism of DDX6 function.

Journal Link: DOI link Journal Link: Publisher Website Journal Link: Downaload PDF

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

DOI link; Publisher Website; Downaload PDF