Research Alert

What can artificial brains teach us about the real ones?

The rules that govern the design of AI algorithms can help us understand brain function.


  • newswise-fullscreen What can artificial brains teach us about the real ones?

    Credit: The Neuro

    Blake Richards

Newswise — Systems neuroscience seeks explanations for how the brain implements a wide variety of perceptual, cognitive and motor tasks. Conversely, artificial intelligence attempts to design computational systems based on the tasks they will have to solve. In the case of artificial neural
networks, the three components specified by design are the objective functions, the learning rules, and architectures. With the growing success of deep learning, which utilizes brain-inspired architectures, these three designed components have increasingly become central to how we model, engineer and optimize complex artificial learning systems.

Here we argue that a greater focus on these components would also benefit systems neuroscience. We give examples of
how this optimization-based framework can drive theoretical and experimental progress in neuroscience. We contend that this principled perspective on systems neuroscience will help to generate more rapid progress.

SEE ORIGINAL STUDY

Chat now!
1.85623