Research Alert

Abstract

Newswise — Wind power generation has strong volatility. Accurate wind speed forecasting can not only avoid the waste of power resources, but also facilitate the development of clean energy and promote the energy transition worldwide. However, previous research has predominantly focused on the accuracy of wind power prediction, while ignoring the reliability of wind speed prediction system. In this research, a hybrid forecasting system with both accuracy and reliability of wind power forecasting is proposed. Firstly, a hybrid adaptive decomposition denoising algorithm is proposed to solve the unreasonable decomposition and residual noise. To improve the search performance, the seagull algorithm is optimized by chaotic system and Cauchy operator, and then the parameters of long short-term memory model are adjusted. Finally, based on data enhancement theory, an interval prediction model combined with kernel density estimation is proposed. The model is verified by the historical data of Sotavento wind farm in Spain and Eman wind farm in China. The average absolute percentage error values of wind speed point prediction are 2.87% and 8.01%, respectively. At the same confidence level, the interval prediction model proposed has narrower widths compared to the comparative model, with higher average interval scores. The results indicate that the point prediction model proposed in this research exhibits higher accuracy, while the interval prediction model demonstrates greater stability and reliability. These findings provide technical support for wind power forecasting.

Journal Link: Renewable and Sustainable Energy Reviews

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Renewable and Sustainable Energy Reviews