A Cheap, Potent Pathway to Pandemic Therapeutics

Newswise — PITTSBURGH, Feb. 15, 2021 – By capitalizing on a convergence of chemical, biological and artificial intelligence advances, University of Pittsburgh School of Medicine scientists have developed an unusually fast and efficient method for discovering tiny antibody fragments with big potential for development into therapeutics against deadly diseases. 

The technique, published today in the journal Cell Systems, is the same process the Pitt team used to extract tiny SARS-CoV-2 antibody fragments from llamas, which could become an inhalable COVID-19 treatment for humans. This approach has the potential to quickly identify multiple potent nanobodies that target different parts of a pathogen—thwarting variants. 

“Most of the vaccines and treatments against SARS-CoV-2 target the spike protein, but if that part of the virus mutates, which we know it is, those vaccines and treatments may be less effective,” said senior author Yi Shi, Ph.D., assistant professor of cell biology at Pitt. “Our approach is an efficient way to develop therapeutic cocktails consisting of multiple nanobodies that can launch a multipronged attack to neutralize the pathogen.” 

Shi and his team specialize in finding nanobodies—which are small, highly specific fragments of antibodies produced by llamas and other camelids. Nanobodies are particularly attractive for development into therapeutics because they are easy to produce and bioengineer. In addition, they feature high stability and solubility, and can be aerosolized and inhaled, rather than administered through intravenous infusion, like traditional antibodies. 

By immunizing a llama with a piece of a pathogen, the animal’s immune system produces a plethora of mature nanobodies in about two months. Then it’s a matter of teasing out which nanobodies are best at neutralizing the pathogen—and most promising for development into therapies for humans. 

That’s where Shi’s “high-throughput proteomics strategy” comes into play. 

“Using this new technique, in a matter of days we’re typically able to identify tens of thousands of distinct, highly potent nanobodies from the immunized llama serum and survey them for certain characteristics, such as where they bind to the pathogen,” Shi said. “Prior to this approach, it has been extremely challenging to identify high-affinity nanobodies.” 

After drawing a llama blood sample rich in mature nanobodies, the researchers isolate those nanobodies that bind specifically to the target of interest on the pathogen. The nanobodies are then broken down to release small “fingerprint” peptides that are unique to each nanobody. These fingerprint peptides are placed into a mass spectrometer, which is a machine that measures their mass. By knowing their mass, the scientists can figure out their amino acid sequence—the protein building blocks that determine the nanobody’s structure. Then, from the amino acids, the researchers can work backward to DNA—the directions for building more nanobodies. 

Simultaneously, the amino acid sequence is uploaded to a computer outfitted with artificial intelligence software. By rapidly sifting through mountains of data, the program “learns” which nanobodies bind the tightest to the pathogen and where on the pathogen they bind. In the case of most of the currently available COVID-19 therapeutics, this is the spike protein, but recently it has become clear that some sites on the spike are prone to mutations that change its shape and allow for antibody “escape.” Shi’s approach can select for binding sites on the spike that are evolutionarily stable, and therefore less likely to allow new variants to slip past. 

Finally, the directions for building the most potent and diverse nanobodies can then be fed into vats of bacterial cells, which act as mini factories, churning out orders of magnitude more nanobodies compared to the human cells required to produce traditional antibodies. Bacterial cells double in 10 minutes, effectively doubling the nanobodies with them, whereas human cells take 24 hours to do the same. 

“This drastically reduces the cost of producing these therapeutics,” said Shi. 

Shi and his team believe their technology could be beneficial for more than just developing therapeutics against COVID-19—or even the next pandemic. 

“The possible uses of highly potent and specific nanobodies that can be identified quickly and inexpensively are tremendous,” said Shi. “We’re exploring their use in treating cancer and neurodegenerative diseases. Our technique could even be used in personalized medicine, developing specific treatments for mutated superbugs for which every other antibiotic has failed.” 

Additional researchers on this publication are Yufei Xiang and Jianquan Xu, Ph.D., both of Pitt; Zhe Sang of Pitt and Carnegie Mellon University; and Lirane Bitton and Dina Schneidman-Duhovny, Ph.D., both of the Hebrew University of Jerusalem

This research was supported by the UPMC Aging Institute, National Institutes of Health grant 1R35GM137905-01, Israel Science Foundation grant 1466/18, the Ministry of Science and Technology of Israel and the Hebrew University of Jerusalem Center for Interdisciplinary Data Science Research. 

To read this release online or share it, visit  https://www.upmc.com/media/news/021521-shi-massspecproteomics [when embargo lifts].

SEE ORIGINAL STUDY



Filters close

Showing results

110 of 5848
Newswise:Video Embedded virtual-event-for-june-17-11am-edt-covid-19-vaccines-and-male-fertility
VIDEO
Released: 18-Jun-2021 8:55 AM EDT
VIDEO AND TRANSCRIPT AVAILABLE: Vaccines and Male Fertility Event for June 17, 2021
Newswise

This upcoming JAMA-published study examined whether the COVID-19 vaccine impacts male fertility.

access_time Embargo lifts in 2 days
Embargo will expire: 22-Jun-2021 11:00 AM EDT Released to reporters: 18-Jun-2021 8:30 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 22-Jun-2021 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 18-Jun-2021 7:05 AM EDT
Teamwork saves lives: COVID-19 hospital network shares key findings to improve care
Michigan Medicine - University of Michigan

Data sharing among 40 Michigan hospitals about the care and outcomes for thousands of inpatients with COVID-19 has led to reduced variation and findings that could inform care anywhere, including approaches for preventing blood clots and reducing overuse of antibiotics, as well as a risk prediction tool.

Released: 18-Jun-2021 7:05 AM EDT
One-third of older Americans delayed health care over COVID concerns
Michigan Medicine - University of Michigan

Nearly one in three Americans between the ages of 50 and 80 put off an in-person appointment for medical care in 2020 because they were worried about exposure to the novel coronavirus, new national poll data show.

Released: 17-Jun-2021 4:15 PM EDT
UNC Researchers Lead Study of Diabetes Treatment of COVID-19 Patients
University of North Carolina School of Medicine

Diabetes is one of the comorbidities most strongly associated with severe COVID-19 in the US, and data from early in the pandemic suggested individuals with type 2 diabetes faced twice the risk of death from COVID-19 and a greater risk of requiring hospitalization and intensive care. A new study shows best treatment options.

Released: 17-Jun-2021 4:10 PM EDT
Vaccination, Previous Infection, Protect Against COVID-19 gamma/P.1 Variant in Animal Model
University of Wisconsin-Madison

In a new study using variant virus recovered from one of the original travelers, researchers in the U.S. and Japan have found that vaccination with an mRNA vaccine induces antibody responses that would protect humans from infection with the gamma/P.1 variant.

Released: 17-Jun-2021 1:30 PM EDT
Hackensack Meridian Doctors, Student Help Establish Way to Prioritize Surgeries During COVID-19 lockdown
Hackensack Meridian Health

The MeNTS method of prioritizing surgeries during the height of pandemic, developed by University of Chicago, helped procedures continue during time of need

Released: 17-Jun-2021 12:55 PM EDT
‘Nanodecoy’ Therapy Binds and Neutralizes SARS-CoV-2 Virus
North Carolina State University

Nanodecoys made from human lung spheroid cells (LSCs) can bind to and neutralize SARS-CoV-2, promoting viral clearance and reducing lung injury in a macaque model of COVID-19.

access_time Embargo lifts in 2 days
Embargo will expire: 21-Jun-2021 11:00 AM EDT Released to reporters: 17-Jun-2021 12:10 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 21-Jun-2021 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: Blood Cancer Patients with COVID-19 Fare Better with Convalescent Plasma
Released: 17-Jun-2021 11:55 AM EDT
Blood Cancer Patients with COVID-19 Fare Better with Convalescent Plasma
Washington University in St. Louis

A large, retrospective, multicenter study involving Washington University School of Medicine in St. Louis indicates that convalescent plasma from recovered COVID-19 patients can dramatically improve likelihood of survival among blood cancer patients hospitalized with the virus. The therapy involves transfusing plasma — the pale yellow liquid in blood that is rich in antibodies — from people who have recovered from COVID-19 into patients who have leukemia, lymphoma or other blood cancers and are hospitalized with the viral infection.


Showing results

110 of 5848

close
2.62765