Antibodies Recognize and Attack Different SARS-CoV-2 Spike Shapes

The spikes on the SARS-CoV-2 virus, which causes COVID-19, change shapes. New research reveals ways that antibodies can recognize these different shapes and block the virus and informs the design of vaccines and antiviral therapies.
Biophysical Society
22-Feb-2021 7:00 AM EST, by Biophysical Society

Newswise — ROCKVILLE, MD – The virus that causes COVID-19 belongs to the family of coronaviruses, “corona” referring to the spikes on the viral surface. These spikes are not static—to infect cells, they change shapes. Maolin Lu, an associate research scientist at Yale University, directly visualized the changing shapes of those spike proteins and monitored how the shapes change when COVID-19 patient antibodies attach. Her work, which was published in Cell Host & Microbe in December 2020 and will be presented on Thursday, February 25 at the 65th Annual Meeting of the Biophysical Society informs the development of COVID-19 vaccines and treatments that target the spikes of the SARS-CoV-2 virus, which causes COVID-19.

When the COVID-19 pandemic hit, Lu was quick to apply her expertise studying the HIV-1 virus to SARS-CoV-2. Prior to the pandemic, Lu studied which shapes of the HIV-1 spikes are most susceptible to antibody attack. Using similar techniques, in March 2020, she turned to SARS-CoV-2.

Because the spike proteins are prominent on the outside of the SARS-CoV-2 virus, they are crucial targets for vaccines and therapeutics. The vaccines that have been approved so far have been designed to help the body generate antibodies that recognize this part of the SARS-CoV-2 virus, blocking its entry into cells. However, Lu says, “the spike protein constantly changes shape, this shape-shifting feature not only allows the virus to enter host cells, it also helps the virus escape from being attacked or recognized by antibodies.”

Using an imaging technique to monitor molecular movements, Lu observed that it adopts at least four shapes. She also watched how the spike proteins responded to serum from patients who recovered from COVID-19, which contained antibodies their body made against the SARS-CoV-2 virus. She noticed that some antibodies recognized and attached to the spike protein when it was in an “open” position and ready to stick to cells. Others preferred to attach to a “closed” spike, which is the spike’s dominant position when the virus first enters the body.

“This indicates that antibodies can attack or antagonize the SARS-CoV-2 spike two different ways. One way is to directly occupy the spike’s open position, then the virus cannot get close or associate with the host cells. The other way is to lock the spike into a closed position. The second locking down strategy has been widely used to develop COVID-19 vaccines,” Lu explained.

When it comes to developing new vaccines or treatments, their research shows that targeting the SARS-CoV-2 spike protein when it is in a closed position may be a particularly effective strategy.

SEE ORIGINAL STUDY



Filters close

Showing results

110 of 5849
Newswise:Video Embedded newswise-expert-panels-on-covid-19-pandemic-notable-excerpts-quotes-and-videos-available
VIDEO
Released: 18-Jun-2021 2:10 PM EDT
Newswise Expert Panels on COVID-19 Pandemic: Notable excerpts, quotes and videos available
Newswise

Newswise is hosting a series of Expert Panels discussion on unique aspects of the COVID-19 pandemic. This tip sheet includes some notable quotes from the panelists.

access_time Embargo lifts in 2 days
Embargo will expire: 23-Jun-2021 8:00 AM EDT Released to reporters: 18-Jun-2021 11:00 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 23-Jun-2021 8:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise:Video Embedded virtual-event-for-june-17-11am-edt-covid-19-vaccines-and-male-fertility
VIDEO
Released: 18-Jun-2021 8:55 AM EDT
VIDEO AND TRANSCRIPT AVAILABLE: Vaccines and Male Fertility Event for June 17, 2021
Newswise

This upcoming JAMA-published study examined whether the COVID-19 vaccine impacts male fertility.

access_time Embargo lifts in 2 days
Embargo will expire: 22-Jun-2021 11:00 AM EDT Released to reporters: 18-Jun-2021 8:30 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 22-Jun-2021 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 18-Jun-2021 7:05 AM EDT
Teamwork saves lives: COVID-19 hospital network shares key findings to improve care
Michigan Medicine - University of Michigan

Data sharing among 40 Michigan hospitals about the care and outcomes for thousands of inpatients with COVID-19 has led to reduced variation and findings that could inform care anywhere, including approaches for preventing blood clots and reducing overuse of antibiotics, as well as a risk prediction tool.

Released: 18-Jun-2021 7:05 AM EDT
One-third of older Americans delayed health care over COVID concerns
Michigan Medicine - University of Michigan

Nearly one in three Americans between the ages of 50 and 80 put off an in-person appointment for medical care in 2020 because they were worried about exposure to the novel coronavirus, new national poll data show.

Released: 17-Jun-2021 4:15 PM EDT
UNC Researchers Lead Study of Diabetes Treatment of COVID-19 Patients
University of North Carolina School of Medicine

Diabetes is one of the comorbidities most strongly associated with severe COVID-19 in the US, and data from early in the pandemic suggested individuals with type 2 diabetes faced twice the risk of death from COVID-19 and a greater risk of requiring hospitalization and intensive care. A new study shows best treatment options.

Released: 17-Jun-2021 4:10 PM EDT
Vaccination, Previous Infection, Protect Against COVID-19 gamma/P.1 Variant in Animal Model
University of Wisconsin-Madison

In a new study using variant virus recovered from one of the original travelers, researchers in the U.S. and Japan have found that vaccination with an mRNA vaccine induces antibody responses that would protect humans from infection with the gamma/P.1 variant.

Released: 17-Jun-2021 1:30 PM EDT
Hackensack Meridian Doctors, Student Help Establish Way to Prioritize Surgeries During COVID-19 lockdown
Hackensack Meridian Health

The MeNTS method of prioritizing surgeries during the height of pandemic, developed by University of Chicago, helped procedures continue during time of need

Released: 17-Jun-2021 12:55 PM EDT
‘Nanodecoy’ Therapy Binds and Neutralizes SARS-CoV-2 Virus
North Carolina State University

Nanodecoys made from human lung spheroid cells (LSCs) can bind to and neutralize SARS-CoV-2, promoting viral clearance and reducing lung injury in a macaque model of COVID-19.


Showing results

110 of 5849

close
2.21852