Rensselaer Polytechnic Institute (RPI)

In Cell Studies, Seaweed Extract Outperforms Remdesivir in Blocking COVID-19 Virus

Heparin, a common anitcoagulent, could also form basis of a viral trap for SARS-CoV-2

Newswise — TROY, N.Y. — In a test of antiviral effectiveness against the virus that causes COVID-19, an extract from edible seaweeds substantially outperformed remdesivir, the current standard antiviral used to combat the disease. Heparin, a common blood thinner, and a heparin variant stripped of its anticoagulant properties, performed on par with remdesivir in inhibiting SARS-CoV-2 infection in mammalian cells.

Published online today in Cell Discovery, the research is the latest example of a decoy strategy researchers from the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselear Polytechnic Institute are developing against viruses like the novel coronavirus that spawned the current global health crisis.

The spike protein on the surface of SARS-CoV-2 latches onto the ACE-2 receptor, a molecule on the surface of human cells. Once secured, the virus inserts its own genetic material into the cell, hijacking the cellular machinery to produce replica viruses. But the virus could just as easily be persuaded to lock onto a decoy molecule that offers a similar fit. The neutralized virus would be trapped and eventually degrade naturally.

Previous research has shown this decoy technique works in trapping other viruses, including dengue, Zika, and influenza A. To hear the researchers discuss their findings, watch this video.

“We’re learning how to block viral infection, and that is knowledge we are going to need if we want to rapidly confront pandemics,” said Jonathan Dordick, the lead researcher and a professor of chemical and biological engineering at Rensselaer Polytechnic Institute. “The reality is that we don’t have great antivirals. To protect ourselves against future pandemics, we are going to need an arsenal of approaches that we can quickly adapt to emerging viruses.” 

The Cell Discovery paper tests antiviral activity in three variants of heparin (heparin, trisulfated heparin, and a non-anticoagulant low molecular weight heparin) and two fucoidans (RPI-27 and RPI-28) extracted from seaweed. All five compounds are long chains of sugar molecules known as sulfated polysaccharides, a structural conformation that the results of a binding study published earlier this month in Antiviral Research suggested as an effective decoy.

The researchers performed a dose response study known as an EC50 — shorthand for the effective concentration of the compound that inhibits 50% of viral infectivity — with each of the five compounds on mammalian cells. For the results of an EC50, which are given in a molar concentration, a lower value signals a more potent compound.

RPI-27 yielded an EC50 value of approximately 83 nanomolar, while a similar previously published and independent in vitro test of remdesivir on the same mammalian cells yielded an EC50 of 770 nanomolar. Heparin yielded an EC50 of 2.1 micromolar, or about one-third as active as remdesivir, and a non-anticoagulant analog of heparin yielded an EC50 of 5.0 micromolar, about one-fifth as active as remdesivir.

A separate test found no cellular toxicity in any of the compounds, even at the highest concentrations tested.

 “What interests us is a new way of getting at infection,” said Robert Linhardt, a Rensselaer professor of chemistry and chemical biology who is collaborating with Dordick to develop the decoy strategy. “The current thinking is that the COVID-19 infection starts in the nose, and either of these substances could be the basis for a nasal spray. If you could simply treat the infection early, or even treat before you have the infection, you would have a way of blocking it before it enters the body.”

Dordick added that compounds from seaweed “could serve as a basis for an oral delivery approach to address potential gastrointestinal infection.” 

In studying SARS-CoV-2 sequencing data, Dordick and Linhardt recognized several motifs on the structure of the spike protein that promised a fit compatible with heparin, a result borne out in the binding study. The spike protein is heavily encrusted in glycans, an adaptation that protects it from human enzymes which could degrade it, and prepares it to bind with a specific receptor on the cell surface.

“It’s a very complicated mechanism that we quite frankly don’t know all the details about, but we’re getting more information,” said Dordick. “One thing that’s become clear with this study is that the larger the molecule, the better the fit. The more successful compounds are the larger sulfated polysaccharides that offer a greater number of sites on the molecules to trap the virus.” 

Molecular modeling based on the binding study revealed sites on the spike protein where the heparin was able to interact, raising the prospects for similar sulfated polysaccharides. 

“This exciting research by Professors Dordick and Linhardt is among several ongoing research efforts at CBIS, as well as elsewhere at Rensselaer, to tackle the challenges of the COVID-19 pandemic through novel therapeutic approaches and the repurposing of existing drugs,” said CBIS Director Deepak Vashishth.

Sulfated polysaccharides effectively inhibit SARS-CoV-2 in vitro” was published in Cell Discovery with the support of the National Research Foundation of Korea. At Rensselaer, Dordick and Linhardt were joined in the research by Paul S. Kwon, Seok-Joon Kwon, Weihua Jin, Fuming Zhang, and Keith Fraser, and by researchers at the Korea Research Institute of Bioscience and Biotechnology in Cheongju, Republic of Korea, and Zhejiang University of Technology in Hangzhou, China.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit www.rpi.edu.

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 5429
Released: 16-Apr-2021 4:10 PM EDT
Rutgers Expert Addresses Questions on COVID-19 Vaccine Rollout and Variant Issues
Rutgers University-New Brunswick

Stanley H. Weiss, an epidemiologist in infectious and chronic diseases, and a professor at the Rutgers New Jersey Medical School and the Rutgers School of Public Health, talks about vaccine side effects, the hesitancy that still exists and why it is important to get vaccinated when it’s your turn.

Released: 16-Apr-2021 3:15 PM EDT
Studies suggest people with blood cancers may not be optimally protected after COVID-19 vaccination
American Society of Hematology (ASH)

Two new studies published in Blood suggest that the mRNA COVID-19 vaccine may have reduced efficacy in individuals with chronic lymphocytic leukemia (CLL) and multiple myeloma, two types of blood cancer.

Newswise: Simulations reveal how dominant SARS-CoV-2 strain binds to host, succumbs to antibodies
Released: 16-Apr-2021 2:35 PM EDT
Simulations reveal how dominant SARS-CoV-2 strain binds to host, succumbs to antibodies
Los Alamos National Laboratory

Large-scale supercomputer simulations at the atomic level show that the dominant G form variant of the COVID-19-causing virus is more infectious partly because of its greater ability to readily bind to its target host receptor in the body, compared to other variants.

Newswise: 262279_web.jpg
Released: 16-Apr-2021 2:15 PM EDT
Experimental antiviral for COVID-19 effective in hamster study
NIH, National Institute of Allergy and Infectious Diseases (NIAID)

The experimental antiviral drug MK-4482 significantly decreased levels of virus and disease damage in the lungs of hamsters treated for SARS-CoV-2 infection, according to a new study from National Institutes of Health scientists.

Newswise:Video Embedded forum-tackles-vaccine-hesitancy-in-the-black-community
VIDEO
Released: 16-Apr-2021 1:25 PM EDT
Forum Tackles Vaccine Hesitancy in the Black Community
Cedars-Sinai

Leading healthcare and faith leaders addressed key issues that are contributing to vaccine hesitancy in Black communities during a national online discussion this week, explaining that a lack of access to healthcare, concerns over vaccine safety, and religious beliefs are keeping many from getting COVID-19 vaccines.

Newswise: COVID-19: Scientists identify human genes that fight infection
Released: 16-Apr-2021 1:10 PM EDT
COVID-19: Scientists identify human genes that fight infection
Sanford Burnham Prebys Medical Discovery Institute

Scientists at Sanford Burnham Prebys have identified a set of human genes that fight SARS-CoV-2 infection, the virus that causes COVID-19. Knowing which genes help control viral infection can greatly assist researchers’ understanding of factors that affect disease severity and also suggest possible therapeutic options. The genes in question are related to interferons, the body’s frontline virus fighters.

Newswise: Study of More Than 3,000 Members of the US Marine Corps. Reveals Past COVID-19 Infection Does Not Fully Protect Young People Against Reinfection
Released: 16-Apr-2021 11:35 AM EDT
Study of More Than 3,000 Members of the US Marine Corps. Reveals Past COVID-19 Infection Does Not Fully Protect Young People Against Reinfection
Mount Sinai Health System

Although antibodies induced by SARS-CoV-2 infection are largely protective, they do not completely protect against reinfection in young people, as evidenced through a longitudinal, prospective study of more than 3,000 young, healthy members of the US Marines Corps conducted by researchers at the Icahn School of Medicine at Mount Sinai and the Naval Medical Research Center, published April 15 in The Lancet Respiratory Medicine.

Released: 15-Apr-2021 8:45 PM EDT
Beyond Boundaries: R Adams Cowley Shock Trauma Center Celebrates Heroes
University of Maryland Medical Center

More than 65 first responders and top trauma medicine professionals who saved the lives of two critically ill patients were honored tonight at the 31st annual R Adams Cowley Shock Trauma Celebration of Heroes. Funds raised by the virtual event will support the Center for Critical Care and Trauma Education.

Released: 15-Apr-2021 4:10 PM EDT
Penn Study Suggests Those Who Had COVID-19 May Only Need One Vaccine Dose
Perelman School of Medicine at the University of Pennsylvania

New findings from Penn suggest that people who have recovered from COVID-19 may only need a single mRNA vaccine dose. However, those who did not have COVID-19 did not have a full immune response until after a second vaccine dose, reinforcing the importance of completing the two recommended doses.


Showing results

110 of 5429

close
1.18751