Killing Coronavirus with UV Light

Penn State Materials Research Institute

Newswise — A personal, handheld device emitting high intensity ultraviolet light to disinfect areas by killing the Coronavirus is now feasible, according to researchers at Penn State, the University of Minnesota and two Japanese universities.

There are two commonly employed methods to sanitize and disinfect areas from bacteria and viruses: either using chemicals or exposure to ultraviolet radiation. This radiation is in the 200 to 300 nanometer range and known to destroy the virus, making it incapable of reproducing and infecting. Widespread adoption of this more efficient UV approach is much in demand in the current situation of a world-wide pandemic, but it requires UV radiation sources that emit sufficiently high doses of UV light. While those devices currently exist, the UV radiation source is typically an expensive mercury-containing gas discharge lamp, which requires high power, has a relatively short lifetime and a bulky form factor. The solution is to develop high performance UV light emitting diodes (LEDs), which would be far more portable, long-lasting, energy efficient and environmentally benign. While these LEDs exist, applying a current to them for light emission is complicated by the fact that the electrode material also has to be transparent to UV light.

“You have to ensure a sufficient UV light dose to kill all the viruses,” said Roman Engel-Herbert, Penn State associate professor of materials science, physics and chemistry. “This means you need a high-performance UV LED emitting a high intensity of UV light, which is currently limited by the transparent electrode material being used.”

While it has been a long-standing problem to find transparent electrode materials operating in the visible spectrum for displays, smartphones and LED lighting, the challenge is even more difficult for ultraviolet light.

“There is currently no good solution for an UV-transparent electrode,” said Joseph Roth, Ph.D. candidate in Materials Science and Engineering at Penn State. “Right now, the current material solution commonly employed for visible light application is used despite it being too absorbing in the UV range. There is simply no good material choice for a UV-transparent conductor material that has been identified.”

Finding a new material with the right composition is key to advancing UV LED performance. The Penn State team, in collaboration with materials theorist from the University of Minnesota, recognized early on that the solution for the problem might be found in a recently discovered new class of transparent conductors. When theoretical predictions pointed to the material strontium niobate, the researchers reached out to their Japanese collaborators to receive strontium niobate films and immediately tested their performance as UV transparent conductors. While these films held the promise of the theoretical predictions, a deposition method had to be found to integrate these films in a scalable way.

“We immediately tried to grow these films using the standard film-growth technique widely adopted in industry, called sputtering,” Roth said.

This a critical step towards technology maturation which makes it possible to integrate this new material into UV LEDs at low cost and high quantity. And this is what both believe is necessary during this crisis.

“While our first motivation in developing UV transparent conductors was to build an economic solution for water disinfection, we now realize that this breakthrough discovery potentially offers a solution to deactivate COVID-19 in aerosols that might be distributed in HVAC systems of building,” Roth explains. Other areas of application for virus disinfection are densely and frequently populated areas, such as theatres, sports arenas and public transportation vehicles, such as buses, subways and airplanes.

Their findings appear online today, June 1, in the Nature Group publication Physics Communications. Co-authors along with Roth and Engel-Herbert, are Yoonsang Park, Alexej Pogrebnyakov and Venkatraman Gopalan of Penn State, Daichi Oka of Tohoku University, Yasushi Hirose and Tetsuya Hasegawa of the University of Tokyo and Arpita Paul and Turan Birol of the University of Minnesota. The paper, titled “SrNbO3 as a transparent conductor in the visible and ultraviolet spectra,” is accessible online at no charge.

This work was supported by the National Science Foundation through the DMREF program and a Graduate Research Fellowship as well as the Japan Society for the Promotion of Science KAKENHI program.




Filters close

Showing results

110 of 4206
Newswise: Proteolytic Enzymes for Covid-19 Studied in 3D for the First Time in Thailand by Chula Biochemists
Released: 4-Dec-2020 8:45 AM EST
Proteolytic Enzymes for Covid-19 Studied in 3D for the First Time in Thailand by Chula Biochemists
Chulalongkorn University

A team of biochemists from Chulalongkorn University became the first researchers in Thailand to study proteolytic enzymes for the Covid–19 virus at a molecular level in 3D, possibly leading to the development of Covid–19 treatments.

Newswise: UC San Diego Bolsters Aggressive Return to Learn Plan to Prevent Outbreaks on Campus
Released: 4-Dec-2020 8:35 AM EST
UC San Diego Bolsters Aggressive Return to Learn Plan to Prevent Outbreaks on Campus
University of California San Diego

UC San Diego’s nationally recognized, evidence-based Return to Learn program employs a comprehensive suite of education, monitoring, testing, intervention and notification tools that no other university is using. And the program continues to expand—including a recent introduction of weekly self-administered student testing kits, growth of the campus’s wastewater viral monitoring program and widespread use of the cellphone-based CA COVID Notify exposure notification system.

Newswise: Pediatric ER Saw Steep Drop in Asthma Visits During Spring COVID-19 Lockdown
1-Dec-2020 8:00 AM EST
Pediatric ER Saw Steep Drop in Asthma Visits During Spring COVID-19 Lockdown
American Thoracic Society (ATS)

A new study published online in the Annals of the American Thoracic Society discusses a steep drop off from prior years in asthma-related emergency department (ED) visits at Boston Children’s Hospital during the spring 2020 COVID-19 surge and lockdown.

access_time Embargo lifts in 2 days
Embargo will expire: 9-Dec-2020 4:00 PM EST Released to reporters: 3-Dec-2020 4:50 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 9-Dec-2020 4:00 PM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

access_time Embargo lifts in 2 days
Embargo will expire: 9-Dec-2020 4:00 PM EST Released to reporters: 3-Dec-2020 3:50 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 9-Dec-2020 4:00 PM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: 250384_web.jpg
Released: 3-Dec-2020 3:05 PM EST
Study finds COVID-19 hindering US academic productivity of faculty with young children
University of Tennessee Health Science Center

The academic productivity of higher education faculty In the United States in the science, technology, engineering, mathematics, and medicine (STEMM) fields with very young children suffered as a result of the stay-at-home orders during the early months of the coronavirus pandemic, according to a new study by researchers at the University of Tennessee Health Science Center, the University of Florida College of Medicine, and the University of Michigan School of Medicine.

Released: 3-Dec-2020 2:50 PM EST
Kidney disease leading risk factor for COVID-related hospitalization
Geisinger Health System

An analysis of Geisinger's electronic health records has revealed chronic kidney disease to be the leading risk factor for hospitalization from COVID-19.

Newswise: Identity Verification During the Age of COVID-19
Released: 3-Dec-2020 2:25 PM EST
Identity Verification During the Age of COVID-19
Homeland Security's Science And Technology Directorate

S&T's Biometric Technology Rally focused on the ability of acquisition systems and matching algorithms to recognize travelers without asking them to remove their masks, thereby reducing risk for frontline workers.

access_time Embargo lifts in 2 days
Embargo will expire: 10-Dec-2020 11:00 AM EST Released to reporters: 3-Dec-2020 2:20 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 10-Dec-2020 11:00 AM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.


Showing results

110 of 4206

close
1.66944