National Virtual Biotechnology Laboratory Unites DOE Labs Against COVID-19

13-Jul-2020 3:40 PM EDT, by Department of Energy, Office of Science

Newswise — Facing a global pandemic, the Department of Energy’s (DOE) national laboratories are mobilizing on a national scale in ways similar to their origins in the Manhattan Project. That sprawling R&D apparatus developed during WWII, which would become the starting point for today’s DOE national laboratory complex, was created to bring together our scientific and technical capabilities during a national crisis. Today, we’re calling on them again to answer the national need of combating the COVID-19 pandemic. With an extraordinary amount of bioscience and biotechnology expertise distributed across the seventeen DOE laboratories, but a need to focus our efforts against COVID-19 as one team, DOE and the laboratories have launched the National Virtual Biotechnology Laboratory (NVBL).

The NVBL brings together capabilities across the complex for tackling COVID-19 and creates a new front door for the broader research community to work with the laboratories on this challenge. Defeating COVID-19 requires conducting science at scale. With the facilities, expertise, and ability to coordinate them, conducting science at this scale is DOE’s superpower.

We’ve identified seven major areas where the national labs can provide unique contributions: molecular structure determination, computational modeling and simulation, epidemiological and logistics support, knowledge discovery infrastructure / scalable protected data, large-scale genomic science capabilities, testing of clinical and non-clinical samples, and supply chain bottlenecks. Let me share just a few of the many possible contributions NVBL can make.

The powerful X-rays at our light sources are one of the most common tools for determining the structure of the proteins that comprise SARS CoV-2, the virus that causes COVID-19. Figuring out these structures helps scientists understand where drugs can attach to the virus and disable it. Researchers used the Advanced Photon Source DOE Office of Science user facility to reveal the structure of a protein called Nsp15. This protein meddles with the human immune system. Developing an anti-viral drug targeting this protein could slow down the virus’s reproduction.

Cryogenic electron microscopy (cryo-EM) – microscopes that use electrons to probe the structure of very cold biological samples to near atomic resolution – are a powerful, complementary tool for determining the structure of viruses and their proteins. The 3D images this technique produces can also show how the virus interacts with antibodies and drugs. The Stanford-SLAC CryoEM Center at SLAC National Laboratory, supported by the National Institutes of Health, is running a suite of cryo-EM instruments to tackle these issues.

Our supercomputers are hard at work as well. Modeling and simulation are a specialty of our high-performance computing user facilities. They help scientists work through the many possible combinations of protein structures. They can also sort through combinations of existing drugs to search for possible treatments. We’re also using our computers to model the spread of diseases and analyze health care data. Our supercomputers are particularly good at handling the many variables in epidemiological models, from traffic patterns to differences in populations.

While most people don’t associate DOE with genomics, we have vast experience analyzing and sequencing genetic data. In particular, we know a lot about analyzing microbial genes, including viruses. The high-throughput genomic sequencing and data analysis capabilities at our Joint Genome Institute user facility and the advanced proteomics and other characterization tools at our Environmental Molecular Science Laboratory user facility, along with powerful capabilities at several other DOE laboratories, can help scientists identify parts of the viral genome that are stable over time. Those are the sections doctors could target with vaccines or anti-viral drugs.      

Manufacturing technology is another area where DOE is shifting its skill toward addressing COVID-19. Our additive manufacturing (3D printing) facilities customarily work to make manufacturing more energy efficient. But now we’re using them to break the bottlenecks in health care equipment manufacturing. Although our national labs will not be making surgical masks or ventilators, they can use their expertise to create molds and dies for better parts that are faster to manufacture. 

The NVBL is a model for the future, helping us to increase coordination across our laboratories and leverage unique proficiencies and tools for common national needs. For decades, DOE has wrestled with the biggest challenges in science, from high energy physics to genomics. In this time of need, we’re proud to unite our national laboratories in service to our country and the world.


The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit

Filters close

Showing results

110 of 2927
Released: 14-Aug-2020 4:55 PM EDT
Managing your child’s diabetes during COVID-19
University of Texas Health Science Center at Houston

These days it’s hard not to worry about whether a quick outing to the grocery store will result in catching COVID-19. But for parents with children who have preexisting health conditions such as diabetes, it can be especially hard not to worry about whether their child is at a higher risk of becoming severely ill from the virus.

Newswise: 1200x800?cb=1597350935
Released: 14-Aug-2020 3:35 PM EDT
Gaiters do no harm: WVU toxicologists find coverings help contain the spread of exhaled droplets
West Virginia University

Experts with the West Virginia University Center for Inhalation Toxicology found that – assuming it’s a good fit - a gaiter will, despite recent reports, provide a respiratory containment of exhaled droplets comparable to a common over-the-ear cloth mask.

Newswise: AI software enables real-time 3D printing quality assessment
Released: 14-Aug-2020 3:05 PM EDT
AI software enables real-time 3D printing quality assessment
Oak Ridge National Laboratory

Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

Newswise: Is the COVID-19 virus pathogenic because it depletes specific host microRNAs?
Released: 14-Aug-2020 3:05 PM EDT
Is the COVID-19 virus pathogenic because it depletes specific host microRNAs?
University of Alabama at Birmingham

Why is the COVID-19 virus deadly, compared to cold-causing coronaviruses? Analysis current literature and bioinformatic study of seven coronaviruses, suggests that SARS-CoV-2 acts as a microRNA “sponge,” leading to better viral replication and blockage of the host immune response.

Released: 14-Aug-2020 2:30 PM EDT
UW team developing model to help lower COVID-19 infections in Seattle, other major cities
University of Washington

A UW team has received a grant to develop a model that uses local data to generate policy recommendations that could help lower COVID-19 infections in King County, which includes Seattle.

Newswise: Cardiovascular risk factors tied to COVID-19 complications and death
12-Aug-2020 7:05 PM EDT
Cardiovascular risk factors tied to COVID-19 complications and death

COVID-19 patients with cardiovascular comorbidities or risk factors are more likely to develop cardiovascular complications while hospitalized, and more likely to die from COVID-19 infection, according to a new study published August 14, 2020 in the open-access journal PLOS ONE by Jolanda Sabatino of Universita degli Studi Magna Graecia di Catanzaro, Italy, and colleagues.

Newswise: Study shows frequently used serology test may not detect antibodies that could confirm protection against reinfection of COVID-19
Released: 14-Aug-2020 1:55 PM EDT
Study shows frequently used serology test may not detect antibodies that could confirm protection against reinfection of COVID-19
University of Texas M. D. Anderson Cancer Center

Two different types of detectable antibody responses in SARS-CoV-2 (COVID-19) tell very different stories and may indicate ways to enhance public health efforts against the disease, according to researchers at The University of Texas MD Anderson Cancer Center. Antibodies to the SARS-CoV-2 spike protein receptor binding domain (S-RBD) are speculated to neutralize virus infection, while the SARS-CoV-2 nucleocapsid protein (N-protein) antibody may often only indicate exposure to the virus, not protections against reinfection.

Released: 14-Aug-2020 1:50 PM EDT
USC scientists identify the order of COVID-19's symptoms
University of Southern California (USC)

USC researchers have found the likely order in which COVID-19 symptoms first appear: fever, cough, muscle pain, and then nausea, and/or vomiting, and diarrhea.

Released: 14-Aug-2020 1:45 PM EDT
Stay the Course with Personal Finances during Pandemic, Johns Hopkins Expert Advises
Johns Hopkins University Carey Business School

Keeping on a careful and steady path is the wisest approach to personal money management during the uncertainties of the COVID-19 crisis, says Associate Professor Yuval Bar-Or of the Johns Hopkins Carey Business School.

access_time Embargo lifts in 2 days
Embargo will expire: 17-Aug-2020 11:00 AM EDT Released to reporters: 14-Aug-2020 1:25 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 17-Aug-2020 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Showing results

110 of 2927