Oak Ridge National Laboratory

Neutrons chart atomic map of COVID-19’s viral replication mechanism

27-Oct-2020 3:40 PM EDT, by Oak Ridge National Laboratory

Newswise — To better understand how the novel coronavirus behaves and how it can be stopped, scientists have completed a three-dimensional map that reveals the location of every atom in an enzyme molecule critical to SARS-CoV-2 reproduction.

Researchers at the Department of Energy’s Oak Ridge National Laboratory used neutron scattering to identify key information to improve the effectiveness of drug inhibitors designed to block the virus’s replication mechanism. The research is published in the Journal of Biological Chemistry.

The SARS-CoV-2 virus, which causes the COVID-19 disease, expresses long chains of proteins composed of approximately 1,900 amino acid residues. For the virus to reproduce, those chains have to be broken down and cut into smaller strands by an enzyme called the main protease. The active protease enzyme is formed from two identical protein molecules held together by hydrogen bonds. Developing a drug that inhibits or blocks the protease activity will prevent the virus from replicating and spreading to other cells in the body.

“This new information is exactly what is needed to design inhibitors with a higher degree of specificity, ensuring the inhibitor molecules are binding very tightly to their intended targets and disabling the protease,” said ORNL’s Andrey Kovalevsky, corresponding author.

Neutron experiments first revealed that the site containing the amino acids where the protein chains are cut is in an electrically charged reactive state and not in a resting or neutral state, contrary to previously held beliefs. Second, they mapped the location of each hydrogen atom in the places where inhibitors would bind to the protease enzyme, as well as the electrical charges of the associated amino acids. The experiments also charted the entire network of hydrogen bonds between the protein molecules that hold the enzyme together and enable it to initiate the chemical process of cutting the protein chains.

“Half of the atoms in proteins are hydrogen. Those atoms are key players in enzymatic function and are essential to how drugs bind,” Kovalevsky said. “If we don’t know where those hydrogens are and how the electrical charges are distributed inside the protein, we can’t design effective inhibitors for the enzyme.”

The team’s neutron study builds on previous research published in the journal Nature Communications, creating a complete atomic structure of the protease enzyme. The researchers have also made their data publicly available to the scientific community before both papers were published to accelerate solutions to the global pandemic.

Neutrons are ideal probes for studying biological structures because they are nondestructive and highly sensitive to light elements such as hydrogen. The neutron scattering experiments were performed at the High Flux Isotope Reactor and the Spallation Neutron Source at ORNL. The protein samples were synthesized in adjacent facilities at the Center for Structural Molecular Biology.

“This might be the quickest neutron structure of a protein ever produced. We started neutron experiments in May, and within five months, we obtained and published our results. That’s something that usually takes years,” said ORNL corresponding author Leighton Coates. “This work demonstrates what we can do at Oak Ridge. Everything was done here from start to finish. The proteins were expressed, purified, and crystallized, and all the data was collected and analyzed on site — a completely vertically integrated approach.”

The team will now use the newly obtained information to investigate the binding properties of drug molecule candidates to produce improved COVID-19 therapeutics.

“Not only is this the first time anyone has obtained a neutron structure of a coronavirus protein, but it’s also the first time anyone has looked at this class of protease enzymes using neutrons,” said ORNL’s Daniel Kneller, the study's first author. “It’s an outstanding example of neutron crystallography serving the community when it needs it the most.”

In addition to Kneller, Coates, and Kovalevsky, the paper’s coauthors include Gwyndalyn Phillips, Kevin L. Weiss, Swati Pant, Qiu Zhang and Hugh M. O’Neill. 

COVID-19 research at ORNL is supported in part by the DOE Office of Science through the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19, with funding provided by the Coronavirus CARES Act.

HFIR and SNS are DOE Office of Science User Facilities.

ORNL is managed by UT-Battelle for the U.S. Department of Energy's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 4156
Newswise: Stimulus Relief Funds Increase Social Distancing to Stop Spread of COVID-19
23-Nov-2020 5:20 PM EST
Stimulus Relief Funds Increase Social Distancing to Stop Spread of COVID-19
University of California San Diego

As case rates of COVID-19 reach new heights across the nation, many states and cities are tightening stay-at-home restrictions to stop the spread. New research suggests that that those suffering from economic hardships are less likely comply with new stay-at-home orders; however these same U.S. residents would be more likely to adhere to the new public health guidelines if their households received stimulus funds.

access_time Embargo lifts in 2 days
Embargo will expire: 1-Dec-2020 9:15 AM EST Released to reporters: 30-Nov-2020 2:30 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 1-Dec-2020 9:15 AM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise:Video Embedded covid-19-update-surge-preparedness-vaccine-distribution
VIDEO
Released: 30-Nov-2020 2:20 PM EST
COVID-19 Update: Surge Preparedness, Vaccine Distribution
Cedars-Sinai

With the novel coronavirus spreading across the U.S. at a record pace, Cedars-Sinai has been seeing an increase in COVID-19 patients at its hospitals and through its network of physicians. But the health system's leaders say Cedars-Sinai is prepared.

Released: 30-Nov-2020 1:20 PM EST
Rethink COVID-19 infection control to keep primary schools open this winter, governments urged
BMJ

An urgent rethink of infection control policies to keep COVID-19 infection at bay in schools is needed if primary schools are to be kept open this winter, and the knock-on effects on their families avoided, argue children's infectious disease specialists in a viewpoint, published online in the Archives of Disease in Childhood.

Newswise: Hackensack University Medical Center Urologists Continue to Provide State-of-the-Art Care During COVID-19
Released: 30-Nov-2020 12:45 PM EST
Hackensack University Medical Center Urologists Continue to Provide State-of-the-Art Care During COVID-19
Hackensack Meridian Health

Don’t Delay Your Care – Our dnhanced pandemic safety precautions prioritize patient health and allow providers to deliver outstanding in-office, telehealth and surgical care

Released: 30-Nov-2020 12:10 PM EST
Struggles of care home staff during COVID-19 first wave revealed in Whatsapp messages
University of Leeds

Analysis of social media messages between care home staff on the coronavirus front line reveal their growing concerns over how to manage in the face of the virus.

Released: 30-Nov-2020 11:30 AM EST
More than one-third of children with COVID-19 show no symptoms: study
University of Alberta Faculty of Medicine & Dentistry

More than one-third of kids who have COVID-19 are asymptomatic, according to a University of Alberta study that suggests youngsters diagnosed with the disease may represent just a fraction of those infected.

Newswise: Promising lab results in quest to find naturally occurring anti-COVID therapies
24-Nov-2020 5:35 PM EST
Promising lab results in quest to find naturally occurring anti-COVID therapies
University of Alabama Huntsville

So far, 35 of 125 naturally occurring compounds identified computationally at The University of Alabama in Huntsville (UAH) to have potential against COVID-19 have shown efficacy in ongoing first-batch testing at the University of Tennessee Health Science Center’s Regional Biocontainment Laboratory (UTHSC RBL) that’s the next step in the process to becoming a drug.

Released: 30-Nov-2020 9:45 AM EST
Rutgers Leading Coronavirus Therapeutic Clinical Trial
Rutgers University-New Brunswick

Rutgers is leading a clinical trial assessing the efficacy of a three-drug combination in treating people infected with SARS-CoV-2 and asymptomatic or mildly symptomatic.


Showing results

110 of 4156

close
3.2323