University of Minnesota College of Science and Engineering

New discovery allows 3D printing of sensors directly on expanding organs

Technology could help diagnose and monitor patients with COVID-19

Newswise — MINNEAPOLIS / ST. PAUL (06/17/2020) — In groundbreaking new research, mechanical engineers and computer scientists at the University of Minnesota have developed a 3D printing technique that uses motion capture technology, similar to that used in Hollywood movies, to print electronic sensors directly on organs that are expanding and contracting. The new 3D printing technique could have future applications in diagnosing and monitoring the lungs of patients with COVID-19.

 The research is published in Science Advances, a peer-reviewed scientific journal published by the American Association for the Advancement of Science (AAAS).

 The new research is the next generation of a 3D printing technique discovered two years ago by members of the team that allowed for printing of electronics directly on the skin of a hand that moved left to right or rotated. The new technique allows for even more sophisticated tracking to 3D print sensors on organs like the lungs or heart that change shape or distort due to expanding and contracting.

 “We are pushing the boundaries of 3D printing in new ways we never even imagined years ago,” said Michael McAlpine, a University of Minnesota mechanical engineering professor and senior researcher on the study. “3D printing on a moving object is difficult enough, but it was quite a challenge to find a way to print on a surface that was deforming as it expanded and contracted.”

 The researchers started in the lab with a balloon-like surface and a specialized 3D printer. They used motion capture tracking markers, much like those used in movies to create special effects, to help the 3D printer adapt its printing path to the expansion and contraction movements on the surface. The researchers then moved on to an animal lung in the lab that was artificially inflated. They were able to successfully print a soft hydrogel-based sensor directly on the surface. McAlpine said the technique could also possibly be used in the future to 3D print sensors on a pumping heart.

“The broader idea behind this research, is that this is a big step forward to the goal of combining 3D printing technology with surgical robots,” said McAlpine, who holds the Kuhrmeyer Family Chair Professorship in the University of Minnesota Department of Mechanical Engineering. “In the future, 3D printing will not be just about printing but instead be part of a larger autonomous robotic system. This could be important for diseases like COVID-19 where health care providers are at risk when treating patients.”

 Other members of the research team included lead author Zhijie Zhu, a University of Minnesota mechanical engineering Ph.D. candidate, and Hyun Soo Park, an assistant professor in the University of Minnesota Department of Computer Science and Engineering.

 The research was supported by Medtronic (for sensor development) and the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number DP2EB020537. Additional support was provided by a University of Minnesota Doctoral Dissertation Fellowship awarded to Zhijie Zhu.

To read the full research study entitled “3D Printed Deformable Sensors,” visit the Science Advances website.




Filters close

Showing results

110 of 2816
access_time Embargo lifts in 2 days
Embargo will expire: 6-Aug-2020 11:00 AM EDT Released to reporters: 5-Aug-2020 4:25 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 6-Aug-2020 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise:Video Embedded uab-department-of-pathology-develops-strategy-to-support-guidesafe-entry-testing-process-more-than-200-000-samples
VIDEO
Released: 5-Aug-2020 4:10 PM EDT
UAB Department of Pathology develops strategy to support GuideSafe™ Entry Testing, process more than 200,000 samples
University of Alabama at Birmingham

This strategy will allow for ramping up testing capacity tenfold for the next 20-plus days leading up to the start of school.

Newswise: 239458_web.jpg
Released: 5-Aug-2020 2:50 PM EDT
New findings on enzymes with important role in SARS-CoV-2 infection
Uppsala University

Researchers at Uppsala University have described the presence, throughout the human body, of the enzyme ACE2.

Newswise: Button Project Lets Children See the Faces Behind the Masks
Released: 5-Aug-2020 2:50 PM EDT
Button Project Lets Children See the Faces Behind the Masks
Vanderbilt University Medical Center

When COVID-19 cases began rising in Nashville, masking became a regular part of life across Vanderbilt University Medical Center and Children’s Hospital as one of several public health safety measures to protect employees and patients from potential COVID-19 exposure. Children’s Hospital decided to get creative to ensure that the 1,700 children and families who visit the hospital and clinics each day can see that the same friendly faces they’ve always known still exist behind the masks.

Newswise: 239490_web.jpg
Released: 5-Aug-2020 1:45 PM EDT
Massey scientist suggests COVID-19 should be treated as an acute inflammatory disease
Virginia Commonwealth University (VCU)

The COVID-19 pandemic has had detrimental effects on global infrastructure sectors, including economic, political, health care, education and research systems, and there is still no definitive treatment strategy for the disease.

Newswise: Helping protect medical professionals
Released: 5-Aug-2020 1:05 PM EDT
Helping protect medical professionals
Sandia National Laboratories

A media comprised of a sandwich of materials, tested by Sandia National Laboratories, is being manufactured into N95-like respirators that could be used in local medical facilities. The project originated from the urgent need for personal protective equipment when the COVID-19 outbreak began.

Released: 5-Aug-2020 12:50 PM EDT
UCI scientists get ‘initial hit’ in developing drug to treat COVID-19
University of California, Irvine

Irvine, Calif., Aug. 5, 2020 – When the coronavirus pandemic hit, almost everyone at the University of California, Irvine – and colleges across the nation – had to abandon campus. But James Nowick, professor of chemistry, was not a part of that exodus. That’s because his lab, which designs and constructs chemical molecules, had the right equipment to help in the global push to find treatments for COVID-19.


Showing results

110 of 2816

close
1.34432