New Study Shows How Mutations in SARS-CoV-2 Allow the Virus to Evade Immune System Defenses

Harvard Medical School
16-Mar-2021 12:15 PM EDT, by Harvard Medical School

Newswise — The vast majority of people infected with SARS-CoV-2 clear the virus, but those with compromised immunity—such as individuals receiving immune-suppressive drugs for autoimmune diseases—can become chronically infected. As a result, their weakened immune defenses continue to attack the virus without being able to eradicate it fully.

This physiological tug-of-war between human host and pathogen offers a valuable opportunity to understand how SARS-CoV-2 can survive under immune pressure and adapt to it.

Now, a new study led by Harvard Medical School scientists offers a look into this interplay, shedding light on the ways in which compromised immunity may render SARS-CoV-2 fitter and capable of evading the immune system.

The research, published March 16 in Cell, shows that a mutated SARS-CoV-2 from a chronically infected immunocompromised patient is capable of evading both naturally occurring antibodies from COVID-19 survivors as well as lab-made antibodies now in clinical use for treatment of COVID-19.

The patient case was originally described Dec. 3, 2020, as a New England Journal of Medicine report by scientists at Brigham and  Women’s Hospital a few weeks before new variants initially detected in the U.K. and South Africa were first reported to the World Health Organization. Interestingly, the patient-derived virus contained a cluster of changes on its spike protein—the current target for vaccines and antibody-based treatments—and some of these changes were later detected in viral samples in the U.K. and South Africa, where they appear to have arisen independently, the researchers said.

The newly published study, which builds on the initial case report, shows something more alarming still. Some of the changes found in the patient-derived virus have not been identified yet in dominant viral variants circulating in the population at large. However, these changes have been already detected in databases of publicly available viral sequences. These mutations remain isolated, the authors of the report said, but they could be harbingers of viral mutants that may spread across the population.

The researchers emphasize that variants initially detected in the U.K. and South Africa remain vulnerable to currently approved mRNA vaccines, which target the entire spike protein rather than just portions of it. Nonetheless, the study results could also offer a preview into a future, in which current vaccines and treatments may gradually lose their effectiveness against next-wave mutations that render the virus impervious to immune pressures. 

“Our experiments demonstrated that structural changes to the viral spike protein offer workarounds that allow the virus to escape antibody neutralization,” said study senior author Jonathan Abraham, assistant professor of microbiology in the Blavatnik Institute at Harvard Medical School and an infectious disease specialist at Brigham and Women’s Hospital. “The concern here is that an accumulation of changes to the spike protein over time could impact the long-term effectiveness of monoclonal antibody therapies and vaccines that target the spike protein.”

Although the scenario remains hypothetical for now, Abraham said, it underscores the importance of two things. First, reducing the growth and spread of mutations by curbing the virus’s spread both through infection-prevention measures and through widespread vaccination. Second, the need to design next-generation vaccines and therapies that target less mutable parts of the virus.

“How the spike responded to persistent immune pressure in one person over a five-month period can teach us how the virus will mutate if it continues to spread across the globe,” added Abraham, who co-leads the COVID-19 therapeutics working group of the Massachusetts Consortium on Pathogen Readiness (MassCPR). “To help stop the virus from circulating, it’s critical to make sure that vaccines are rolled out in an equitable way so that everyone in every country has a chance to get immunized.”

A game of survival

Mutations are a normal part of a virus’s life cycle. They occur when a virus makes copies of itself. Many of these mutations are inconsequential, others are harmful to the virus itself and yet others may become advantageous to the microbe, allowing it to propagate more easily from host to host. This latter change allows a variant to become more transmissible. If a change on a variant confers some type of evolutionary advantage to the virus, this variant can gradually outcompete others and become dominant.

In the early months of the pandemic, the assumption—and hope—was that SARS-CoV-2 would not change too fast because, unlike most RNA viruses, it has a “proofreading” protein whose job is to prevent too many changes to the viral genome. But last fall, Abraham and colleagues became intrigued by—and then alarmed about—a patient receiving immune-suppressive treatment for an autoimmune disorder who had been infected with SARS-CoV-2. The patient had developed a chronic infection. A genomic analysis of the patient’s virus showed a cluster of eight mutations on the viral spike protein, which the virus uses to enter human cells and that is the target of current antibody treatments and vaccines. Specifically, the mutations had clustered on a segment of the spike known as the receptor-binding domain (RBD), the part that antibodies latch onto to prevent SARS-CoV-2 from entering human cells.

Abraham and colleagues knew the changes were a sign that the virus had developed workarounds to the patient’s immune defenses. But would these mutations allow the virus to dodge the immune assault of antibodies that were not the patient’s own?

To answer the question, Abraham and colleagues created lab-made, noninfectious replicas of the patient virus that mimicked the various structural changes that had accumulated in the span of five months.

In a series of experiments, the researchers exposed the dummy virus to both antibody-rich plasma from COVID-19 survivors and to pharmaceutically made antibodies now in clinical use. The virus dodged both naturally occurring and pharmaceutical-grade antibodies.

Experiments with a monoclonal antibody drug that contains two antibodies showed the virus was entirely resistant to one of the antibodies in the cocktail and somewhat, although not fully, impervious to the other. The second antibody was four-times less potent in neutralizing the mutated virus.

Not all eight mutations rendered the virus equally resistant to antibodies. Two particular mutations conferred the greatest resistance to both natural and lab-grown antibodies.

In a final experiment, the researchers created a super antibody by cobbling together proteins from naturally occurring antibodies that had evolved over time to become more attuned to and better at recognizing SARS-CoV-2 and capable of latching onto it more tightly. The process, known as antibody affinity maturation, is the principle behind vaccine booster shots used to fortify existing antibodies. One specific variant containing mutations that had occurred late in the course of the patient’s infection was capable of withstanding even this super-potent antibody. But the super-potent antibody did manage to neutralize viral mutations detected at a different time in the course of the infection.

“This observation underscores two points: That the virus is smart enough to eventually evolve around even our most potent antibody therapies, but that we can also get ahead by ‘cooking’ new potent antibodies now, before new variants emerge,” Abraham said

Getting ahead of the virus

Taken together the findings underscore the need to further understand human antibody responses to SARS-CoV-2 and to untangle the complex interplay between virus and human host, the researchers said. Doing so would allow scientist to anticipate changes in the virus and design countermeasures around these mutations before they become widespread. In the short term, this speaks to the greater need to design antibody-based therapies and vaccines that directly target more stable, less mutable parts of the spike protein beyond its mutation-prone RBD region.

Long-term, this means that scientists should pivot toward developing therapies that go beyond antibody immunity and include also so-called cellular immunity, which is driven by T cells—a separate branch of the immune system that is independent of antibody-based immunity.

The most immediate implication, however, Abraham said, is to stay on top of emerging mutations through aggressive genomic surveillance. This means that instead of merely detecting whether SARS-CoV-2 is present in a patient sample, the tests should also analyze the viral genome and look for mutations. The technology to do so exists and is used in several countries as a way to monitor viral behavior and track changes to the virus across the population. “In the United States, especially, the strategy has been to test and say whether a person is infected or not infected,” Abraham said. “But there’s a lot more information in that sample that can be obtained to help us track whether the virus is mutating. I am encouraged by the concerted efforts across the world to monitor sequences more aggressively—doing so is critical.”

“It is important for us to stay ahead of this virus as it continues to evolve,” said study first author Sarah Clark, member of the Abraham lab and a fourth-year student in the Ph.D. Program in Virology at Harvard University. “My hope is that our study provides insights that allow us to continue to do that.”

Co-authors included Lars Clark, Junhua Pan, Adrian Coscia, Sundaresh Shankar, Rebecca Johnson, Vesna Brusic, Manish Choudhary, James Regan, Jonathan Li of Harvard Medical School; and Anthony Griffiths and Lindsay McKay, both of Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL) and Boston University School of Medicine.

The work was supported with funding from National Institutes of Health grants P30 GM124165 and S10 RR029205, U.S. Department of Energy grant DE-AC02-06CH11357, MassCPR and China Evergrande Group.

Disclosures Jonathan Abraham, Lars Clark, and Sara Clark are inventors on a provisional patent application filed by Harvard University that includes antibodies reported in this work.

 

 

 

SEE ORIGINAL STUDY



Filters close

Showing results

110 of 5850
Newswise: New Analysis reveals link between birthdays and COVID-19 spread during the height of the pandemic
17-Jun-2021 12:10 PM EDT
New Analysis reveals link between birthdays and COVID-19 spread during the height of the pandemic
Harvard Medical School

Risk of SARS-CoV-2 infection increased 30 percent for households with a recent birthday in counties with high rates of COVID-19 Findings suggest informal social gatherings such as birthday parties played role in infection spread at the height of the coronavirus pandemic No birthday-bash infection jumps seen in areas with low rates of COVID-19 Households with children’s birthdays had greater risk of SARS-CoV-2 infection than with adult birthdays

Newswise: COVID-19 dual-antibody therapies effective against variants in animal study
Released: 21-Jun-2021 10:05 AM EDT
COVID-19 dual-antibody therapies effective against variants in animal study
Washington University in St. Louis

A study from Washington University School of Medicine in St. Louis suggests that many, but not all, COVID-19 therapies made from combinations of two antibodies are effective against a wide range of virus variants, and that combination therapies appear to prevent the emergence of drug resistance.

13-Jun-2021 12:05 PM EDT
COVID-19 Pandemic Drinking: Increases Among Women, Black Adults, and People with Children
Research Society on Alcoholism

Risky drinking has been a public health concern in the U.S. for decades, but the significant increase in retail alcohol sales following COVID-19 pandemic stay-at-home orders in particular raised red flags for alcohol researchers. New research has assessed changes in alcohol drinking patterns from before to after the enactment of stay-at-home orders. These results and others will be shared at the 44th annual scientific meeting of the Research Society on Alcoholism (RSA), which will be held virtually this year from the 19th - 23rd of June 2021 due to the COVID-19 pandemic.

13-Jun-2021 1:05 PM EDT
The Impact of the COVID-19 Pandemic on Alcohol Consumption Is Far From ‘One Size Fits All’
Research Society on Alcoholism

An ongoing analysis of the effects of the COVID-19 pandemic on alcohol and related outcomes shows that COVID-related stressors experienced by study participants – including work-, financial-, and family-related stressors – are having a varied impact on individuals with and without alcohol use disorders (AUDs). These results will be shared at the 44th annual scientific meeting of the Research Society on Alcoholism (RSA), which will be held virtually this year from the 19th - 23rd of June 2021 due to the COVID-19 pandemic.

Newswise:Video Embedded newswise-expert-panels-on-covid-19-pandemic-notable-excerpts-quotes-and-videos-available
VIDEO
Released: 18-Jun-2021 2:10 PM EDT
Newswise Expert Panels on COVID-19 Pandemic: Notable excerpts, quotes and videos available
Newswise

Newswise is hosting a series of Expert Panels discussion on unique aspects of the COVID-19 pandemic. This tip sheet includes some notable quotes from the panelists.

access_time Embargo lifts in 2 days
Embargo will expire: 23-Jun-2021 8:00 AM EDT Released to reporters: 18-Jun-2021 11:00 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 23-Jun-2021 8:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise:Video Embedded virtual-event-for-june-17-11am-edt-covid-19-vaccines-and-male-fertility
VIDEO
Released: 18-Jun-2021 8:55 AM EDT
VIDEO AND TRANSCRIPT AVAILABLE: Vaccines and Male Fertility Event for June 17, 2021
Newswise

This upcoming JAMA-published study examined whether the COVID-19 vaccine impacts male fertility.

access_time Embargo lifts in 2 days
Embargo will expire: 22-Jun-2021 11:00 AM EDT Released to reporters: 18-Jun-2021 8:30 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 22-Jun-2021 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 18-Jun-2021 7:05 AM EDT
Teamwork saves lives: COVID-19 hospital network shares key findings to improve care
Michigan Medicine - University of Michigan

Data sharing among 40 Michigan hospitals about the care and outcomes for thousands of inpatients with COVID-19 has led to reduced variation and findings that could inform care anywhere, including approaches for preventing blood clots and reducing overuse of antibiotics, as well as a risk prediction tool.

Released: 18-Jun-2021 7:05 AM EDT
One-third of older Americans delayed health care over COVID concerns
Michigan Medicine - University of Michigan

Nearly one in three Americans between the ages of 50 and 80 put off an in-person appointment for medical care in 2020 because they were worried about exposure to the novel coronavirus, new national poll data show.


Showing results

110 of 5850

close
1.26829