Penn State College of Engineering

Penn State engineer aims to tackle COVID-19 from two angles

22-Apr-2020 2:55 PM EDT, by Penn State College of Engineering

Research Alert

Newswise — UNIVERSITY PARK, Pa. — To combat COVID-19 in both the treatment and testing arenas, Yong Wang, Penn State professor of biomedical engineering, has received two grants from the Huck Institutes of the Life Sciences COVID-19 multi-institute seed grant fund.

Wang will use the testing grant to look at the creation of a COVID-19 analysis potentially capable of producing results that could be easily read in minutes. Wang will serve as the primary investigator for the project.

“(Our goal is to) use a very high strong signal to definitively display results to the person administering the test, even if they're not specifically trained,” Wang said. “With this method, at a drive-up testing site, the testers could have the person pull over in their car and wait a few minutes to find out if they are COVID-19 positive.”

Wang’s method involves detection of COVID-19 RNA — the virus’ genetic material — with a portable handheld fluorometer, which uses magnetic beads of iron oxide to extract the RNA.

“The current tests take a long time, require a complicated process, and may not be accurate,” Wang said. “When there are millions of people who need to be diagnosed, you want it to be ready for a very fast examination, that gives a clear signal quickly.”

The most common current method of COVID-19 testing, polymerase chain reaction (PCR), adds enzymes to jump-start a chemical process to enable detection of RNA in nasal swab samples. Sometimes during this process, the enzymes can lose their bioactivity and cause false negative results. Another issue with the tests is that a highly trained individual is needed to read the data to determine the results.

With Wang’s proposed test, special equipment would not be required either, something Wang said would give the test a unique portability.

“Since we plan to do tests at room temperature with simple technology, you wouldn't have to get test results in a laboratory. You can do it in the field,” Wang said. “You can quickly test people on a cruise ship, you can do tests in a parking lot and just about anywhere, so there are a lot of advantages to this method.”

The other seed grant Wang received is for a potential treatment method focused on suppressing cytokine storms in the lungs of patients induced by COVID-19. A cytokine storm, or cytokine release syndrome, is a severe immune reaction where the immune system releases too many cytokines into the blood too quickly. Cytokines are messenger proteins, requesting more or less immune activity depending on the situation. Releasing too many into the blood causes the immune system to overreact and attack healthy tissues, leading to organ damage and even death.

Wang is working with a co-primary investigator, Troy Sutton, Penn State assistant professor of veterinary and biomedical sciences, on this grant. They aim to suppress cytokine storms via living cells and a new cell delivery mechanism.

“Once COVID-19 patients enter intensive care units, pretty much you can only do one thing to keep them alive, and that’s provide oxygen via ventilators,” Wang said. “For full recovery, we have to rely on the patient’s immune system. But the immune system is in chaos due to COVID-19, so we have to rely on something that will allow the immune system to go back to normal.”

In the next three months, Wang and Sutton will collect preliminary data to demonstrate that their new system is able to calm the immune system in cell samples. After that, they will conduct animal studies to see if they can reduce immune activity and even reduce the amount of viral activity. Sutton’s expertise is in working in high containment with highly infectious respiratory pathogens, making him an ideal research partner for Wang.

“We hope to have the first step done within six months,” Wang said.

For Wang, helping humanity, such as fighting a pandemic, is why he became a biomedical engineer.

“Now is the time for us to help our fellow humans, to help our nation and to help our world,” Wang said.

Filters close

Showing results

110 of 2528
Released: 10-Jul-2020 3:05 PM EDT
Simple blood test can predict severity of COVID-19 for some patients
University of Texas Health Science Center at Houston

An early prognosis factor that could be a key to determining who will suffer greater effects from COVID-19, and help clinicians better prepare for these patients, may have been uncovered by researchers at The University of Texas Health Science Center at Houston (UTHealth). Results of the findings were published today in the International Journal of Laboratory Hematology.

Released: 10-Jul-2020 12:50 PM EDT
Genetic ‘fingerprints’ of first COVID-19 cases help manage pandemic
University of Sydney

A new study published in the world-leading journal Nature Medicine, reveals how genomic sequencing and mathematical modelling gave important insights into the ‘parentage’ of cases and likely spread of the disease in New South Wales.

Released: 10-Jul-2020 12:35 PM EDT
Our itch to share helps spread COVID-19 misinformation
Massachusetts Institute of Technology (MIT)

To stay current about the Covid-19 pandemic, people need to process health information when they read the news. Inevitably, that means people will be exposed to health misinformation, too, in the form of false content, often found online, about the illness.

Newswise: Pandemic Inspires Framework for Enhanced Care in Nursing Homes
Released: 10-Jul-2020 12:25 PM EDT
Pandemic Inspires Framework for Enhanced Care in Nursing Homes
University of Pennsylvania School of Nursing

As of May 2020, nursing home residents account for a staggering one-third of the more than 80,000 deaths due to COVID-19 in the U.S. This pandemic has resulted in unprecedented threats—like reduced access to resources needed to contain and eliminate the spread of the virus—to achieving and sustaining care quality even in the best nursing homes. Active engagement of nursing home leaders in developing solutions responsive to the unprecedented threats to quality standards of care delivery is required.

Newswise: General Electric Healthcare Chooses UH to Clinically 
Evaluate First-of-its-kind Imaging System
Released: 10-Jul-2020 12:15 PM EDT
General Electric Healthcare Chooses UH to Clinically Evaluate First-of-its-kind Imaging System
University Hospitals Cleveland Medical Center

University Hospitals Cleveland Medical Center physicians completed evaluation for the GE Healthcare Critical Care Suite, and the technology is now in daily clinical practice – flagging between seven to 15 collapsed lungs per day within the hospital. No one on the team could have predicted the onset of the COVID-19 pandemic, but this technology and future research with GEHC may enhance the capability to improve care for COVID-19 patients in the ICU. Critical Care Suite is now assisting in COVID and non-COVID patient care as the AMX 240 travels to intensive care units within the hospital.

Released: 10-Jul-2020 11:50 AM EDT
COVID-19 Can Be Transmitted in the Womb, Reports Pediatric Infectious Disease Journal
Wolters Kluwer Health: Lippincott Williams and Wilkins

A baby girl in Texas – born prematurely to a mother with COVID-19 – is the strongest evidence to date that intrauterine (in the womb) transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur, reports The Pediatric Infectious Disease Journal, the official journal of The European Society for Paediatric Infectious Diseases. The journal is published in the Lippincott portfolio by Wolters Kluwer.

Released: 10-Jul-2020 9:45 AM EDT
How COVID-19 Shifted Inpatient Imaging Utilization
Harvey L. Neiman Health Policy Institute

As medical resources shifted away from elective and non-urgent procedures toward emergent and critical care of COVID-19 patients, departments were forced to reconfigure their personnel and resources. In particular, many Radiology practices rescheduled non-urgent and routine imaging according to recommendations from the American College of Radiology (ACR). This new Harvey L. Neiman Health Policy Institute study, published online in the Journal of American College of Radiology (JACR), evaluates the change in the inpatient imaging volumes and composition mix during the COVID-19 pandemic within a large healthcare system.

access_time Embargo lifts in 2 days
Embargo will expire: 12-Jul-2020 7:00 PM EDT Released to reporters: 10-Jul-2020 9:00 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 12-Jul-2020 7:00 PM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 10-Jul-2020 9:00 AM EDT
Team is first in Texas to investigate convalescent plasma for prevention of COVID-19 onset and progression
University of Texas Health Science Center at Houston

A research team is the first in Texas to investigate whether plasma from COVID-19 survivors can be used in outpatient settings to prevent the onset and progression of the virus in two new clinical trials at UTHealth.

Showing results

110 of 2528