Georgia Institute of Technology

Portable UV Disinfection Chambers Could Help Address PPE Shortage

Newswise — Portable disinfection chambers that use ultraviolet (UV) light to inactivate virus particles could allow emergency medical technicians, police officers, healthcare workers, pharmacy technicians, and others to quickly disinfect their personal protective equipment (PPE) as they need it.

Researchers at the Georgia Tech Research Institute (GTRI) have built two prototype chambers to evaluate PPE disinfection using different sources of UV-C light: mercury vapor lamps and light-emitting diodes (LEDs). They used the prototypes to evaluate different power levels and disinfection times with a variety of face shields and face masks used to protect workers from the coronavirus.

“There are tradeoffs in terms of cost, lifetime, and potential heat generated,” said T. Robert Harris, a GTRI research engineer. “We wanted to evaluate these issues so that when others use UV-C for disinfecting PPE, they will have information to make good choices.”

The goal was to provide disinfection chambers as small as possible to allow portability. The chambers were built to accommodate face masks and at least one face shield – a curved sheet of clear plastic that covers the entire face and protects against large droplets that could contain coronavirus. The portability of the chambers could allow them to be used anywhere PPE disinfection is needed.

“We wanted a box that would fit on an ambulance or in a police car so that public service staff who are coming into contact with a lot of people on a regular basis would be able to disinfect their PPE,” Harris said. “This method offers an advantage over chemical disinfection because it doesn’t require drying time or risk of chemical absorption.”

Originally, the project aimed at disinfecting PPE while it was being worn by having healthcare workers walk past an ultraviolet source while going from one hospital room to another. That idea was dropped because the wavelengths needed to inactivate the virus – 280 nanometers – can cause skin and eye damage in humans.

For that reason, the prototype portable disinfection chambers include a safety interlock to prevent the door from being opened while the UV light is on. Disinfection takes about eight minutes, depending on the intensity of UV emissions, which vary by the lighting source. The chambers are designed to be cleaned between uses.

“Healthcare workers would put their face masks and face shields into the box, close the lid, and set the timer,” Harris explained. “They would swap out one set of PPE while the other set was being disinfected.”

Ultraviolet light can damage plastic items, but Harris and his colleagues didn’t attempt to evaluate how many disinfection cycles the PPE could withstand. “You would expect UV to ultimately degrade PPE materials in the same way that sunlight slowly degrades polymer materials,” he said.

The research team designed the chambers to provide the level of UV exposure that earlier studies had shown would inactivate the closely related SARs-CoV virus by damaging its outer shell and RNA. The researchers did not attempt to evaluate the ability of the UV light to inactivate the SARS-Cov-2 virus that causes Covid-19.

Other engineering considerations included the need for cooling the UV sources, providing consistent exposure of the PPE to UV light using reflective walls in the chambers, and protecting the mercury vapor lamps from damage during use.

Ultraviolet light is now used in water and wastewater sanitation, food disinfection, killing pathogens in HVAC systems, and other purposes. Because of the growing number of applications, finding enough mercury vapor lamps and LED sources was a challenge for the research program, which was funded by GTRI’s independent research and development program.

Harris hopes the project will encourage others to further develop UV-based portable disinfection systems to supplement other methods for protecting people who encounter the coronavirus.

“This work is part of a realization that multiple tools – including handwashing, surface disinfection, face masks, UV disinfection, social distancing, and other steps – are important and much more powerful when done together,” he said. “We should all use every tool we have at our disposal to combat this virus and really think about things carefully to break every link in the chain of contagious transmission.”

Beyond Harris, the research team included Roger Campbell, Ashton Hattori, Eric Brown, Christopher Hollis, Max Schureck, Howard Atchley, John Stone, Michael Grady, and Benjamin Yang.




Filters close

Showing results

110 of 3321
Newswise: 243389_web.jpg
Released: 18-Sep-2020 10:55 AM EDT
Potential new drug to mitigate SARS-CoV-2 infection consequences
University of Malaga

Scientists from the Department of Cell Biology of the University of Malaga (UMA) and the Andalusian Centre for Nanomedicine and Biotechnology (BIONAND) have made progress in finding new rapid implementation therapies to combat the COVID-19 pandemic, identifying a new drug that could prevent or mitigate the consequences derived from SARS-CoV-2 infection.

Newswise: 243400_web.jpg
Released: 18-Sep-2020 10:40 AM EDT
Most homemade masks are doing a great job, even when we sneeze, study finds
University of Illinois at Urbana-Champaign

Studies indicate that homemade masks help combat the spread of viruses like COVID-19 when combined with frequent hand-washing and physical distancing.

access_time Embargo lifts in 2 days
Embargo will expire: 23-Sep-2020 8:00 AM EDT Released to reporters: 18-Sep-2020 10:00 AM EDT

A reporter's PressPass is required to access this story until the embargo expires on 23-Sep-2020 8:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 18-Sep-2020 8:30 AM EDT
Immunotherapy Drug Development Pipeline Continues Significant Growth in 2020 Despite Global Pandemic Impact
Cancer Research Institute

Despite the impact of the COVID-19 pandemic across the globe, there has been a resurgence of interest in immuno-oncology (I-O) preclinical and clinical development, bringing hope to cancer patients and physicians who treat them.

Released: 17-Sep-2020 5:50 PM EDT
AERA and OECD to Co-Host Webinar on Education Research Worldwide in a Covid and Post-Covid World
American Educational Research Association (AERA)

The American Educational Research Association (AERA) and the Organisation for Economic Co-operation and Development (OECD) will co-host a webinar on “Education Research Worldwide in a Covid and Post-Covid World” at 9:30-11:00 am EDT Wednesday, September 23.

Newswise: 243232_web.jpg
Released: 17-Sep-2020 4:20 PM EDT
Study shows first proof that a safer UV light effectively kills virus causing COVID-19
Hiroshima University

A study conducted by Hiroshima University researchers found that using Ultraviolet C light with a wavelength of 222 nanometers which is safer to use around humans effectively kills SARS-CoV-2 -- the first research in the world to prove its efficacy against the virus that causes COVID-19.

Newswise:Video Embedded american-academy-of-dermatology-honors-detroit-physician-iltefat-h-hamzavi-with-national-patient-care-hero-award
VIDEO
Released: 17-Sep-2020 4:00 PM EDT
American Academy of Dermatology honors Detroit physician Iltefat H. Hamzavi with national “Patient Care Hero” award
American Academy of Dermatology

The American Academy of Dermatology has named board-certified dermatologist Iltefat H. Hamzavi, MD, FAAD, a Patient Care Hero for his innovative use of light therapy to sanitize masks needed by frontline health care workers.

access_time Embargo lifts in 2 days
Embargo will expire: 22-Sep-2020 11:00 AM EDT Released to reporters: 17-Sep-2020 3:20 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 22-Sep-2020 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 17-Sep-2020 3:05 PM EDT
Does a New Study Give Evidence that the Coronavirus Was Made In a Lab?
Newswise

Scientists in a new paper make strong claims regarding evidence that the COVID-19 virus did not originate in nature—the prevailing theory—but instead was made in a lab. According to six leading experts in evolutionary biology and infectious disease consulted by Newsweek, the paper offers no new information, makes numerous unsubstantiated claims and its scientific case is weak.


Showing results

110 of 3321

close
1.28731