The Rockefeller University Press

SARS-CoV-2 can infect neurons and damage brain tissue, study indicates

Newswise — Using both mouse and human brain tissue, researchers at Yale School of Medicine have discovered that SARS-CoV-2 can directly infect the central nervous system and have begun to unravel some of the virus’s effects on brain cells. The study, published today in the Journal of Experimental Medicine (JEM), may help researchers develop treatments for the various neurological symptoms associated with COVID-19.

Though COVID-19 is considered to primarily be a respiratory disease, SARS-CoV-2 can affect many other organs in the body, including, in some patients, the central nervous system, where infection is associated with a variety of symptoms ranging from headaches and loss of taste and smell to impaired consciousness, delirium, strokes, and cerebral hemorrhage.

“Understanding the full extent of viral invasion is crucial to treating patients, as we begin to try to figure out the long-term consequences of COVID-19, many of which are predicted to involve the central nervous system,” says Akiko Iwasaki, a professor at Yale School of Medicine.

Many questions remain to be answered, including whether SARS-CoV-2 can infect neurons or other types of brain cells. To address this question, a team led by Iwasaki and co-senior author Kaya Bilguvar, an associate professor at Yale School of Medicine, analyzed the ability of SARS-CoV-2 to invade human brain organoids, miniature 3D organs grown in the lab from human stem cells. The researchers found that the virus was able to infect neurons in these organoids and use the neuronal cell machinery to replicate. The virus appears to facilitate its replication by boosting the metabolism of infected cells, while neighboring, uninfected neurons die as their oxygen supply is reduced.

SARS-CoV-2 enters lung cells by binding to a protein called ACE2, but whether this protein is present on the surface of brain cells is unclear. The Yale team determined that the ACE2 protein is, in fact, produced by neurons and that blocking this protein prevents the virus from human brain organoids.

SARS-CoV-2 was also able to infect the brains of mice genetically engineered to produce human ACE2, causing dramatic alterations in the brain’s blood vessels that could potentially disrupt the organ’s oxygen supply. Central nervous system infection was much more lethal in mice than infections limited to the lungs, the researchers found.

Finally, the researchers analyzed the brains of three patients who succumbed to COVID-19. SARS-CoV-2 was detected in the cortical neurons of one of these patients, and the infected brain regions were associated with ischemic infarcts in which decreased blood supply causes localized tissue damage and cell death. Microinfarcts were detected in the brain autopsy of all three patients.

“Our study clearly demonstrates that neurons can become a target of SARS-CoV-2 infection, with devastating consequences of localized ischemia in the brain and cell death,” Bilguvar says. “Our results suggest that neurologic symptoms associated with COVID-19 may be related to these consequences, and may help guide rational approaches to the treatment of COVID-19 patients with neuronal disorders.”

“Future studies will be needed to investigate what might predispose some patients to infections of the central nervous system and to determine the route of SARS-CoV-2 invasion into the brain and the sequence of infection in different cell types within the central nervous system that will help validate the temporal relationship between SARS-CoV-2 and ischemic infarcts in patients,” Iwasaki adds.

 

Song et al., 2021. J. Exp. Med. https://rupress.org/jem/article-lookup/doi/10.1084/jem.20202135?PR

 

 

# # #

 

About the Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by the Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 4578
Newswise: UCLA Researcher’s Team Finds Common Blood Pressure Medications do not Increase COVID-19 Risk
Released: 18-Jan-2021 12:05 PM EST
UCLA Researcher’s Team Finds Common Blood Pressure Medications do not Increase COVID-19 Risk
UCLA Fielding School of Public Health

Dr. Marc Suchard, of the UCLA Fielding School of Public Health, co-led international research team looking at two widely used types of blood pressure drugs.

Newswise: UCLA Fielding School of Public Health Researchers Say Mask Mandates Could add $1 Trillion to the U.S. GDP
Released: 18-Jan-2021 12:05 PM EST
UCLA Fielding School of Public Health Researchers Say Mask Mandates Could add $1 Trillion to the U.S. GDP
UCLA Fielding School of Public Health

The team, including UCLA Fielding School of Public Health professors Anne Rimoin and Christina Ramirez, found that near-universal adoption of nonmedical masks in public, combined with complementary public health measures, could successfully eliminate spread of the infection. and add $1 Trillion to the U.S. GDP.

Released: 18-Jan-2021 10:45 AM EST
Mount Sinai Researchers Build Models Using Machine Learning Technique to Enhance Predictions of COVID-19 Outcomes
Mount Sinai Health System

Mount Sinai researchers have published one of the first studies using federated learning to examine electronic health records to better predict how COVID-19 patients will progress.

Newswise:Video Embedded pregnant-women-should-consider-taking-the-covid-19-vaccine
VIDEO
Released: 18-Jan-2021 7:50 AM EST
Pregnant women should consider taking the COVID-19 vaccine.
University of Washington School of Medicine

f pregnant individuals catch COVID they will generally get sicker than non-pregnant individuals. They also more commonly end up on ECMO [heart-lung support], in the ICU or on ventilators.

Newswise: Have allergies? Worried about COVID-19 vaccine? Don’t be.
Released: 18-Jan-2021 7:40 AM EST
Have allergies? Worried about COVID-19 vaccine? Don’t be.
UW Medicine

Even people who have experienced severe allergic reactions to food, latex, pets, pollen, or bee stings should get the coronavirus vaccine, UW Medicine allergy and infectious disease experts say.

Released: 15-Jan-2021 5:40 PM EST
Research Links Social Isolation to COVID-19 Protocol Resistance
Humboldt State University

As health officials continue to implore the public to wear masks and practice social distancing, recent research by Humboldt State University Psychology Professor Amber Gaffney provides key insights into connections between social isolation, conspiratorial thinking, and resistance to COVID-19 protocols.

Newswise: Rapid blood test identifies COVID-19 patients at high risk of severe disease
Released: 15-Jan-2021 5:35 PM EST
Rapid blood test identifies COVID-19 patients at high risk of severe disease
Washington University in St. Louis

Scientists at Washington University School of Medicine in St. Louis have shown that a relatively simple and rapid blood test can predict which patients with COVID-19 are at highest risk of severe complications or death. The blood test measures levels of mitochondrial DNA, which normally resides inside the energy factories of cells. Mitochondrial DNA spilling out of cells and into the bloodstream is a sign that a particular type of violent cell death is taking place in the body.

Released: 15-Jan-2021 2:55 PM EST
COVID-19 deaths really are different. But best practices for ICU care should still apply, studies suggest.
Michigan Medicine - University of Michigan

COVID-19 deaths are indeed different from other lung failure deaths, according to two recent studies, with 56% of COVID-19 patients dying primarily from the lung damage caused by the virus, compared with 22% of those whose lungs fail due to other causes. But, the researchers conclude, the kind of care needed to help sustain people through the worst cases of all forms of lung failure is highly similar, and just needs to be fine-tuned.

Released: 15-Jan-2021 2:50 PM EST
45% of adults over 65 lack online medical accounts that could help them sign up for COVID-19 vaccinations
Michigan Medicine - University of Michigan

As the vaccination of older adults against COVID-19 begins across the country, new poll data suggests that many of them don’t yet have access to the “patient portal” online systems that could make it much easier for them to schedule a vaccination appointment. In all, 45% of adults aged 65 to 80 had not set up an account with their health provider’s portal system.


Showing results

110 of 4578

close
1.39891