Story Tips from Johns Hopkins Experts on COVID-19

Johns Hopkins Medicine

Front-Line Worker Story: Sandra Zaeh, M.D. — COVID-19 from Diagnosis to Recovery

Media Contact: Rachel Butch

It seems like there will never be enough “thank you’s” for the incredible doctors, nurses technicians and support staff members who are working around the clock to help patients with this dangerous disease. It is their dedication, determination and spirit that allow Johns Hopkins to deliver the promise of medicine.

Sandy Zaeh is a pulmonary critical care fellow at The Johns Hopkins Hospital. Zaeh’s training experience at Johns Hopkins is far from usual. She’s now taken on the intense responsibility of caring for patients with some of the worst cases of COVID-19. However, these trying times have offered a unique opportunity: to follow her patients from the intensive care unit (ICU) through their recovery. She’s a member of the post-acute COVID-19 team that helps recovering patients navigate their return to everyday life. “It is unbelievable to see a patient who has been fighting for their life for weeks to recover enough to go home,” says Zaeh.

Sandy Zaeh is available for interviews with the press.

Johns Hopkins Team Develops New Method to Make Kidney Dialysis Fluid for Patients with COVID-19

Media Contact: Michael E. Newman

The ongoing COVID-19 pandemic has severely impacted the manufacturing and supply chains for many products. But while shortages of toilet paper, disinfectant cleaners and hand sanitizer get most of the news coverage, the diminishing reserve of one item — kidney dialysis fluid, also known as dialysate — presents a grave threat to the lives of people with acute kidney injury (AKI), including the approximately 3% to 9% of COVID-19 patients who develop the disorder.

Without the special type of 24-hour, slowly administered dialysis — called continuous veno-venous hemodialysis, or CVVHD — that is given to AKI patients in an intensive care unit, damaged kidneys cannot remove wastes and excess fluids from the blood as they normally do. Unfortunately, the COVID-19 pandemic has severely tapped dialysate supplies across the nation.

When two New York-based hospitals recently contacted Derek Fine, M.D., clinical director of nephrology at the Johns Hopkins University School of Medicine, to seek spare dialysate to help meet their need for some 3,000 liters per day (for all of their AKI patients in ICUs, both with and without COVID-19), he and Chirag Parikh, M.D., Ph.D., M.B.B.S., director of the medical school’s Division of Nephrology, came up with a better idea to remedy the problem.  
Their solution was to replace the dwindling stocks of pre-mixed, commercially produced dialysate required for short-term ICU kidney dialysis machines with a suitable substitute manufactured by conventional hemodialysis devices and designed for long-term treatment.

The latter creates its own dialysate in real time from ultrapure water and concentrated chemical solutions.

Fine, Parikh and colleagues from their division studied the workings of a conventional dialysis machine, learned how it manufactures dialysate and then adjusted the system to override alarms, which if triggered would automatically shut down dialysate production. However, one major obstacle remained: how to get the newly minted dialysate into bags.  

No problem, thanks to students from the Johns Hopkins University Department of Biomedical Engineering. In just 12 hours, they designed a connector and used a 3D printer to render the plastic piece.

“When we tried it out, we were successfully able to capture the dialysate, and that was the eureka moment,” Parikh says.

The U.S. Food and Drug Administration has already provided guidelines for the method, calling for all dialysate produced to be tested intermittently for bacteria and used within 12 hours from its origin. The two New York hospitals that spurred the birth of the new technique are reporting that it has enabled them to maintain sufficient supplies of dialysate for CVVHD.

Parikh and Fine, who are available for interviews, have posted instructions on converting a hemodialysis machine to produce dialysate, and the files for printing the connector, in a Google document or via Twitter: @KidneydrChirag.
 
What Will It Take to Get Critically Ill COVID-19 Patients Ready for Discharge?

Media Contact: Waun’Shae Blount

Recovery for patients who are COVID-19 positive and who are admitted to the hospital frequently includes a stay in the intensive care unit, often for long periods of time, and long ICU stays can sometimes lead to complications. According to Johns Hopkins experts, doctors need to tend to the patient’s current medical needs while considering the long-term health implications from a long ICU hospitalization, which may include significant rehab to help them recovery.

Johns Hopkins Physical Medicine and Rehabilitation teams have put into practice years of experience and training, and implemented an interdisciplinary approach to providing rehab care to patients who are COVID-19 positive that includes multiple sessions of therapy per day while a patient is still in the hospital, oftentimes in the intensive care unit. This is a unique approach not currently used by many hospitals in the nation, but Johns Hopkins experts say physiatrists around the globe should implement it in their health systems.

The unique approach includes physiatrists, physical therapists, occupational therapists, speech therapists and rehab psychologists assisting patients who are COVID-19 positive and who are medically ready to get up and move much sooner, while preparing patients for a smooth transition to home or outpatient rehab. Survivors of COVID-19 are often deconditioned and debilitated, and have a hoarse voice and some trouble swallowing. The interdisciplinary approach is critical to getting impaired patients prepared to successfully re-integrate into their home and the community.
 
April Pruski, M.D., assistant professor of physical medicine and rehabilitation, is available for comment on the early rehab measures the teams must take to mobilize patients who are COVID-19 positive while still in the hospital.

Pediatric Multisystem Inflammatory Syndrome and COVID-19

Media Contact: Waun’Shae Blount

Pediatric multisystem inflammatory syndrome (PMIS) is a very rare disease potentially linked to new coronavirus infection (which is responsible for COVID-19) in children and teens. The condition is marked by symptoms similar to those of Kawasaki disease and toxic shock syndrome, including body inflammation, rash, high fever, upset stomach and cardiac dysfunction, but there are some differences. For example, Kawasaki disease occurs commonly in children younger than 5 years of age and in children of Asian ancestry, but PMIS occurs in children of any age and so far has not been reported from Asian countries such as Japan, China and Korea.

Though dozens of cases have been reported in the U.S. and worldwide, researchers do not have strong evidence regarding what is causing the sudden surge in cases, but they have found that children who develop symptoms also test positive for COVID-19 antibodies — meaning they likely recently had the illness. More research is needed to better understand the syndrome and its connection to the new coronavirus infection.

While scientific investigations are underway around the world, parents are encouraged to monitor their children for symptoms including a rash, prolonged fever, tiredness and being less active than usual. Important to note, children may not have any specific symptoms, making this condition sometimes challenging for parents to spot. Treatment options are still being investigated, but may include treatments for Kawasaki disease such as intravenous immunoglobulin (IVIG), steroids and other anti-inflammatory drugs.

Expert Kwang Sik Kim, M.D., director of the Eudowood Division of Pediatric Infectious Diseases, is available for comment on pediatric multisystem inflammatory syndrome.

Does COVID-19 Affect the Brain?

Media Contact: Rachel Butch

As COVID-19 spreads around the globe, the impact on the human body may be far wider than only the damage it causes in the lungs. One area of particular concern among researchers is the virus’s potential impact on the brain.

Among the first symptoms of COVID-19 is the loss of smell and taste, and there are reports of people in recovery struggling with cognitive impairment or stroke. According to researchers, these symptoms could be caused by neurons degenerating or damage to blood vessels that feed the brain.

“We need to get an understanding of how brain cells are affected by COVID-19, which cells are affected and how we can slow the damage,” says Valina Dawson, Ph.D., director of the neuroregeneration and stem cell programs at Johns Hopkins’ Institute for Cell Engineering.

Dawson plans to study cells in the nervous system that may be susceptible to damage from the virus. The Johns Hopkins team will start with the basic question of which cell types are affected by the coronavirus, looking at neurons as well as supportive cells in the brain called glia and microglia, and the brain’s blood cells. Then, the team aims to use human stem cells to create “minibrains” in the laboratory that replicate how COVID-19 infections may affect the human brain.

“If we know how the disease progresses and in which brain cells, we can help inform future treatments,” says Dawson.

A second facet of the study will look at the long-term outlook for COVID-19 patients. Dawson aims to collaborate with pathology experts to examine the proteins in the brains of people who succumbed to COVID-19 — proteins such as tau and alpha synuclein —that are susceptible to misfolding. This trait causes them to aggregate in the brain, leading to damage to the surrounding tissues. These are the same proteins Dawson believes are responsible for the progression of neurodegenerative disease including Parkinson’s disease, Alzheimer’s and amytropic lateral sclerosis (ALS).

Dawson suspects that the stress of a coronavirus infection on a person’s brain could drive these proteins to accumulate more quickly.

“We want to know if we could potentially face a tsunami of increased neurodegenerative disease onset among COVID-19 survivors,” says Dawson.

Dawson is available to discuss her research.

I’ve Recovered. When Can I Come Out of Isolation?

Media Contact: Vanessa McMains, Ph.D.

As more and more people are recovering from COVID-19, they may be unsure when it’s all right to resume trips to the grocery store, pharmacy or other places for essentials without being a risk to others. Johns Hopkins infectious disease specialist Sara Keller, M.D., M.P.H., M.S.H.P., and her colleagues recommend following the Centers for Disease Control and Prevention’s guidance, which says that a person should remain in isolation for the following conditions, whichever is later:
•  At least 14 days after exposure
•  At least 10 days after the start of symptoms  
•  At least three days after the last fever if no fever-reducing medications were taken
•  At least three days after other symptoms resolved, such as cough or shortness of breath
•  At least three full days after symptoms such as fever, shortness of breath or coughing subside

For anyone with prolonged illness; patients with certain conditions, such as specific kinds of cancer; and people who are immunosuppressed, such as organ transplant recipients, Johns Hopkins physicians recommend retesting to ensure they no longer have the virus before coming out of isolation. They recommend similar retesting for residents of  nursing homes or people who are homeless.

Experts recommend that those who have recovered still practice social distancing, wash their hands frequently, and follow their state or local quarantine guidelines.

Keller is available to journalists to discuss how to appropriately emerge from isolation.

For information from Johns Hopkins Medicine about the coronavirus pandemic, visit hopkinsmedicine.org/coronavirus. For information on the coronavirus from throughout the Johns Hopkins enterprise, including the Johns Hopkins Bloomberg School of Public Health and The Johns Hopkins University, visit coronavirus.jhu.edu.

 




Filters close

Showing results

110 of 4573
Released: 15-Jan-2021 5:40 PM EST
Research Links Social Isolation to COVID-19 Protocol Resistance
Humboldt State University

As health officials continue to implore the public to wear masks and practice social distancing, recent research by Humboldt State University Psychology Professor Amber Gaffney provides key insights into connections between social isolation, conspiratorial thinking, and resistance to COVID-19 protocols.

Newswise: Rapid blood test identifies COVID-19 patients at high risk of severe disease
Released: 15-Jan-2021 5:35 PM EST
Rapid blood test identifies COVID-19 patients at high risk of severe disease
Washington University in St. Louis

Scientists at Washington University School of Medicine in St. Louis have shown that a relatively simple and rapid blood test can predict which patients with COVID-19 are at highest risk of severe complications or death. The blood test measures levels of mitochondrial DNA, which normally resides inside the energy factories of cells. Mitochondrial DNA spilling out of cells and into the bloodstream is a sign that a particular type of violent cell death is taking place in the body.

Released: 15-Jan-2021 2:55 PM EST
COVID-19 deaths really are different. But best practices for ICU care should still apply, studies suggest.
Michigan Medicine - University of Michigan

COVID-19 deaths are indeed different from other lung failure deaths, according to two recent studies, with 56% of COVID-19 patients dying primarily from the lung damage caused by the virus, compared with 22% of those whose lungs fail due to other causes. But, the researchers conclude, the kind of care needed to help sustain people through the worst cases of all forms of lung failure is highly similar, and just needs to be fine-tuned.

Released: 15-Jan-2021 2:50 PM EST
45% of adults over 65 lack online medical accounts that could help them sign up for COVID-19 vaccinations
Michigan Medicine - University of Michigan

As the vaccination of older adults against COVID-19 begins across the country, new poll data suggests that many of them don’t yet have access to the “patient portal” online systems that could make it much easier for them to schedule a vaccination appointment. In all, 45% of adults aged 65 to 80 had not set up an account with their health provider’s portal system.

Released: 15-Jan-2021 1:30 PM EST
New England Journal of Medicine publishes COVID-19 treatment trial results
University of Texas at San Antonio

A clinical trial involving COVID-19 patients hospitalized at UT Health San Antonio and University Health, among roughly 100 sites globally, found that a combination of the drugs baricitinib and remdesivir reduced time to recovery, according to results published Dec. 11 in the New England Journal of Medicine.

Released: 15-Jan-2021 12:40 PM EST
DNA test can quickly identify pneumonia in patients with severe COVID-19, aiding faster treatment
University of Cambridge

Researchers have developed a DNA test to quickly identify secondary infections in COVID-19 patients, who have double the risk of developing pneumonia while on ventilation than non-COVID-19 patients.

Released: 15-Jan-2021 12:30 PM EST
Fight CRC To Present Research Findings on The Impact of COVID-19 on the Colorectal Cancer Community at 2021 GI ASCO
Fight Colorectal Cancer

Fight Colorectal Cancer presents abstract at Gastrointestinal Cancer Symposium highlighting the need to address the barriers and opportunities for care within the colorectal cancer community during the COVID-19 pandemic

Released: 15-Jan-2021 12:25 PM EST
Technion to Award Honorary Doctorate to Pfizer CEO Dr. Albert Bourla
American Technion Society

Israel's Technion will award an honorary doctorate to Pfizer CEO and Chairman Dr. Albert Bourla, for leading the development of the novel vaccine against SARS-CoV-2, the virus that causes COVID-19. The honorary doctorate will be conferred at the Technion Board of Governors meeting in November 2021.

Released: 15-Jan-2021 11:30 AM EST
UW researchers develop tool to equitably distribute limited vaccines
University of Wisconsin-Madison

Researchers at the University of Wisconsin School of Medicine and Public Health and UW Health have developed a tool that incorporates a person’s age and socioeconomic status to prioritize vaccine distribution among people who otherwise share similar risks due to their jobs.


Showing results

110 of 4573

close
1.05241