University of Wisconsin-Madison

Tiny mineral particles are better vehicles for promising gene therapy

2-Jul-2020 12:30 PM EDT, by University of Wisconsin-Madison

Newswise — MADISON, Wis. — University of Wisconsin–Madison researchers have developed a safer and more efficient way to deliver a promising new method for treating cancer and liver disorders and for vaccination — including a COVID-19 vaccine from Moderna Therapeutics that has advanced to clinical trials with humans.

The technology relies on inserting into cells pieces of carefully designed messenger RNA (mRNA), a strip of genetic material that human cells typically transcribe from a person’s DNA in order to make useful proteins and go about their business. Problems delivering mRNA safely and intact without running afoul of the immune system have held back mRNA-based therapy, but UW–Madison researchers are making tiny balls of minerals that appear to do the trick in mice.

“These microparticles have pores on their surface that are on the nanometer scale that allow them to pick up and carry molecules like proteins or messenger RNA,” says William Murphy, a UW–Madison professor of biomedical engineering and orthopedics. “They mimic something commonly seen in archaeology, when we find intact protein or DNA on a bone sample or an eggshell from thousands of years ago. The mineral components helped to stabilize those molecules for all that time.”

Murphy and UW–Madison collaborators used the mineral-coated microparticles (MCMs) — which are 5 to 10 micrometers in diameter, about the size of a human cell — in a series of experiments to deliver mRNA to cells surrounding wounds in diabetic mice. Wounds healed faster in MCM-treated mice, and cells in related experiments showed much more efficient pickup of the mRNA molecules than other delivery methods.

The researchers described their findings today in the journal Science Advances.

In a healthy cell, DNA is transcribed into mRNA, and mRNA serves as the instructions the cell’s machinery uses to make proteins. A strip of mRNA created in a lab can be substituted into the process to tell a cell to make something new. If that something is a certain kind of antigen, a molecule that alerts the immune system to the presence of a potentially harmful virus, the mRNA has done the job of a vaccine.

The UW–Madison researchers coded mRNA with instructions directing cell ribosomes to pump out a growth factor, a protein that prompts healing processes that are otherwise slow to unfold or nonexistent in the diabetic mice (and many severely diabetic people).

mRNA is short-lived in the body, though, so to deliver enough to cells typically means administering large and frequent doses in which the mRNA strands are carried by containers made of molecules called cationic polymers.

“Oftentimes the cationic component is toxic. The more mRNA you deliver, the more therapeutic effect you get, but the more likely it is that you're going to see toxic effect, too. So, it's a trade-off,” Murphy says. What we found is when we deliver from the MCMs, we don't see that toxicity. And because MCM delivery protects the mRNA from degrading, you can get more mRNA where you want it while mitigating the toxic effects."

The new study also paired mRNA with an immune-system-inhibiting protein, to make sure the target cells didn’t pick the mRNA out as a foreign object and destroy or eject it.

Successful mRNA delivery usually keeps a cell working on new instructions for about 24 hours, and the molecules they produce disperse throughout the body. That’s enough for vaccines and the antigens they produce. To keep lengthy processes like growing replacement tissue to heal skin or organs, the proteins or growth factors produced by the cells need to hang around for much longer.

“What we’ve seen with the MCMs is, once the cells take up the mRNA and start making protein, that protein will bind right back within the MCM particle,” Murphy says. “Then it gets released over the course of weeks. We’re basically taking something that would normally last maybe hours or even a day, and we're making it last for a long time.”

And because the MCMs are large enough that they don’t enter the bloodstream and float away, they stay right where they are needed to keep releasing helpful therapy. In the mice, that therapeutic activity kept going for more than 20 days.

“They are made of minerals similar to tooth enamel and bone, but designed to be reabsorbed by the body when they’re not useful anymore,” says Murphy, whose work is supported by the Environmental Protection Agency, the National Institutes of Health and the National Science Foundation and a donation from UW–Madison alums Michael and Mary Sue Shannon.

“We can control their lifespan by adjusting the way they’re made, so they dissolve harmlessly when we want.”

The technology behind the microparticles was patented with the help of the Wisconsin Alumni Research Foundation and is licensed to Dianomi Therapeutics, a company Murphy co-founded.

The researchers are now working on growing bone and cartilage and repairing spinal cord injuries with mRNA delivered by MCMs.

This research was supported by grants from the Environmental Protection Agency (S3.TAR grant 83573701), the National Institutes of Health (R01AR059916, R21EB019558, NIH 5 T32 GM008349) and the National Science Foundation (DMR 1105591, DGE-1256259).

MEDIA CONTACT
Register for reporter access to contact details
CITATIONS

Science Advances July 1, 2020




Filters close

Showing results

110 of 2927
Released: 14-Aug-2020 4:55 PM EDT
Managing your child’s diabetes during COVID-19
University of Texas Health Science Center at Houston

These days it’s hard not to worry about whether a quick outing to the grocery store will result in catching COVID-19. But for parents with children who have preexisting health conditions such as diabetes, it can be especially hard not to worry about whether their child is at a higher risk of becoming severely ill from the virus.

Newswise: 1200x800?cb=1597350935
Released: 14-Aug-2020 3:35 PM EDT
Gaiters do no harm: WVU toxicologists find coverings help contain the spread of exhaled droplets
West Virginia University

Experts with the West Virginia University Center for Inhalation Toxicology found that – assuming it’s a good fit - a gaiter will, despite recent reports, provide a respiratory containment of exhaled droplets comparable to a common over-the-ear cloth mask.

Newswise: AI software enables real-time 3D printing quality assessment
Released: 14-Aug-2020 3:05 PM EDT
AI software enables real-time 3D printing quality assessment
Oak Ridge National Laboratory

Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

Newswise: Is the COVID-19 virus pathogenic because it depletes specific host microRNAs?
Released: 14-Aug-2020 3:05 PM EDT
Is the COVID-19 virus pathogenic because it depletes specific host microRNAs?
University of Alabama at Birmingham

Why is the COVID-19 virus deadly, compared to cold-causing coronaviruses? Analysis current literature and bioinformatic study of seven coronaviruses, suggests that SARS-CoV-2 acts as a microRNA “sponge,” leading to better viral replication and blockage of the host immune response.

Released: 14-Aug-2020 2:30 PM EDT
UW team developing model to help lower COVID-19 infections in Seattle, other major cities
University of Washington

A UW team has received a grant to develop a model that uses local data to generate policy recommendations that could help lower COVID-19 infections in King County, which includes Seattle.

Newswise: Cardiovascular risk factors tied to COVID-19 complications and death
12-Aug-2020 7:05 PM EDT
Cardiovascular risk factors tied to COVID-19 complications and death
PLOS

COVID-19 patients with cardiovascular comorbidities or risk factors are more likely to develop cardiovascular complications while hospitalized, and more likely to die from COVID-19 infection, according to a new study published August 14, 2020 in the open-access journal PLOS ONE by Jolanda Sabatino of Universita degli Studi Magna Graecia di Catanzaro, Italy, and colleagues.

Newswise: Study shows frequently used serology test may not detect antibodies that could confirm protection against reinfection of COVID-19
Released: 14-Aug-2020 1:55 PM EDT
Study shows frequently used serology test may not detect antibodies that could confirm protection against reinfection of COVID-19
University of Texas M. D. Anderson Cancer Center

Two different types of detectable antibody responses in SARS-CoV-2 (COVID-19) tell very different stories and may indicate ways to enhance public health efforts against the disease, according to researchers at The University of Texas MD Anderson Cancer Center. Antibodies to the SARS-CoV-2 spike protein receptor binding domain (S-RBD) are speculated to neutralize virus infection, while the SARS-CoV-2 nucleocapsid protein (N-protein) antibody may often only indicate exposure to the virus, not protections against reinfection.

Released: 14-Aug-2020 1:50 PM EDT
USC scientists identify the order of COVID-19's symptoms
University of Southern California (USC)

USC researchers have found the likely order in which COVID-19 symptoms first appear: fever, cough, muscle pain, and then nausea, and/or vomiting, and diarrhea.

Released: 14-Aug-2020 1:45 PM EDT
Stay the Course with Personal Finances during Pandemic, Johns Hopkins Expert Advises
Johns Hopkins University Carey Business School

Keeping on a careful and steady path is the wisest approach to personal money management during the uncertainties of the COVID-19 crisis, says Associate Professor Yuval Bar-Or of the Johns Hopkins Carey Business School.

access_time Embargo lifts in 2 days
Embargo will expire: 17-Aug-2020 11:00 AM EDT Released to reporters: 14-Aug-2020 1:25 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 17-Aug-2020 11:00 AM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.


Showing results

110 of 2927

close
1.00564