University at Buffalo

UB spinoff Cytocybernetics receives funding to accelerate COVID-19 drug screening

28-Oct-2020 11:35 AM EDT, by University at Buffalo

Newswise — BUFFALO, N.Y. — As COVID-19 infection rates and death tolls continue to rise, researchers and scientists around the world are racing to clear candidate drug therapies for COVID-19.

University at Buffalo spinoff Cytocybernetics is aiding in this effort by developing a high-tech tool called CyberQ to rapidly assess whether or not investigational COVID-19 drugs have arrhythmogenic properties that can result in sudden cardiac death — a critical step in the U.S. Food and Drug Administration’s drug approval process.

For this work, the company has been awarded $44,990 in supplemental COVID-19 funds through the National Science Foundation’s Small Business Technology Transfer (STTR) program. The funds are an amendment to an initial Phase I STTR award received by the company in June 2019, bringing Cytocybernetics’ total award sum for the project to $269,990.

“Since the late 1990s, all new drugs must demonstrate that they are safe and do not unreasonably increase the risk of sudden cardiac death. The FDA mandates cardiac risk information from all drug candidates, and most companies use a slow, laborious approach that was developed over 20 years ago,” says Glenna Bett, PhD, Cytocybernetics CEO and vice chair for research in the Department of Obstetrics and Gynecology in the Jacobs School of Medicine and Biomedical Sciences at UB.

To replace this outdated process, CyberQ utilizes advanced computer models and machine learning to quickly analyze electrophysiological data from a variety of in-vitro assays and accurately determine if new drugs may produce cardiac arrhythmias that could lead to patient death.

“The COVID situation requires quick answers to drug risk, but skipping or paying inadequate attention to this safety test can lead to serious problems, which may only become apparent when the drug is widely used. We are partnering with the FDA to produce a simple yet powerful analysis of drug data to determine the clinical risk of a drug candidate,” Bett explains. “This new process is designed to reduce the time to bring a drug to market, and to increase the clinical relevance of the preclinical drug safety testing, resulting in fewer post-market adverse events. Shortening the time and increasing the accuracy of this testing will bring down the cost of commercializing a candidate compound.”

Cytocybernetics senior software engineer Leigh Korbel, who graduated from UB with a master's in physics and advanced certification in computational science, is the lead investigator on the NSF-funded project.

According to Bett, the older FDA process for determining the cardiac safety of drug candidates often resulted in large errors in early stages of drug development, resulting in premature abandonment of promising drugs. Along with safety tests for new potential therapies, Cytocybernetics’ software uses artificial intelligence to reexamine old data to recognize such drugs.

"The net result is that drugs that were well along in development that have the potential to be part of the solution to COVID-19 can be ‘resurrected’ to fight the disease much more quickly than starting from scratch,” says Randall Rasmusson, PhD, co-founder of Cytocybernetics, and a professor of physiology and biophysics in Jacobs School of Medicine and Biomedical Sciences.

UB is dedicated to supporting startups founded on innovations from its faculty and students. In recent years, initiatives and programs led by the Office of Business and Entrepreneur Partnerships (BEP) have connected growing startups like Cytocybernetics with funding, space, facilities, expertise and business mentorship to help them reach key business milestones.

"We’re proud to see UB spinoff companies like Cytocybernetics making progress in developing technologies that solve an urgent market challenge and can impact millions of lives,” says Christina Orsi, UB associate vice president for economic development. “We’re always looking to connect with more faculty and students who have innovative ideas that can benefit society, so we can help them determine whether there’s a commercial opportunity for their innovation and, if so, a path to market.”




Filters close

Showing results

110 of 4204
access_time Embargo lifts in 2 days
Embargo will expire: 9-Dec-2020 4:00 PM EST Released to reporters: 3-Dec-2020 4:50 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 9-Dec-2020 4:00 PM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

access_time Embargo lifts in 2 days
Embargo will expire: 9-Dec-2020 4:00 PM EST Released to reporters: 3-Dec-2020 3:50 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 9-Dec-2020 4:00 PM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Newswise: 250384_web.jpg
Released: 3-Dec-2020 3:05 PM EST
Study finds COVID-19 hindering US academic productivity of faculty with young children
University of Tennessee Health Science Center

The academic productivity of higher education faculty In the United States in the science, technology, engineering, mathematics, and medicine (STEMM) fields with very young children suffered as a result of the stay-at-home orders during the early months of the coronavirus pandemic, according to a new study by researchers at the University of Tennessee Health Science Center, the University of Florida College of Medicine, and the University of Michigan School of Medicine.

Released: 3-Dec-2020 2:50 PM EST
Kidney disease leading risk factor for COVID-related hospitalization
Geisinger Health System

An analysis of Geisinger's electronic health records has revealed chronic kidney disease to be the leading risk factor for hospitalization from COVID-19.

Newswise: Identity Verification During the Age of COVID-19
Released: 3-Dec-2020 2:25 PM EST
Identity Verification During the Age of COVID-19
Homeland Security's Science And Technology Directorate

S&T's Biometric Technology Rally focused on the ability of acquisition systems and matching algorithms to recognize travelers without asking them to remove their masks, thereby reducing risk for frontline workers.

access_time Embargo lifts in 2 days
Embargo will expire: 10-Dec-2020 11:00 AM EST Released to reporters: 3-Dec-2020 2:20 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 10-Dec-2020 11:00 AM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

access_time Embargo lifts in 2 days
Embargo will expire: 7-Dec-2020 4:45 PM EST Released to reporters: 3-Dec-2020 2:10 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 7-Dec-2020 4:45 PM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

Released: 3-Dec-2020 2:00 PM EST
Testosterone May Contribute to More Severe COVID-19 Disease
American Physiological Society (APS)

New research suggests that levels of the sex hormones estrogen and testosterone could contribute to infection risk and severity of COVID-19.

access_time Embargo lifts in 2 days
Embargo will expire: 10-Dec-2020 12:00 PM EST Released to reporters: 3-Dec-2020 1:50 PM EST

A reporter's PressPass is required to access this story until the embargo expires on 10-Dec-2020 12:00 PM EST The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.


Showing results

110 of 4204

close
1.51659