University of California, Irvine

UCI scientists get ‘initial hit’ in developing drug to treat COVID-19

Synthetic molecule binds to coronavirus enzyme, blocks key function

Newswise — Irvine, Calif., Aug. 5, 2020 – When the coronavirus pandemic hit, almost everyone at the University of California, Irvine – and colleges across the nation – had to abandon campus. But James Nowick, professor of chemistry, was not a part of that exodus. That’s because his lab, which designs and constructs chemical molecules, had the right equipment to help in the global push to find treatments for COVID-19.

Nowick’s team set to work in April, and now, on the preprint server bioRxiv, they describe the development of a ring-shaped molecule called a macrocycle that’s designed to gum up the machinery of the virus by blocking the action of an enzyme essential for it to reproduce.

Adam Kreutzer, a project scientist in Nowick’s group, spearheaded the effort to design and produce the new molecule. “We didn’t know for sure if we could synthesize the macrocycle, because sometimes macrocycles can be difficult to synthesize,” Nowick said.

But Kreutzer succeeded on his first try with the macrocycle the team thought might work. “It’s a novel molecule that’s never been made before,” he said.

The researchers then tested the macrocycle to see if it could block the action of the coronavirus enzyme. The macrocycle binds to an enzyme molecule called the main protease that’s necessary for the virus to function. The protease cleaves long strings of proteins that the virus forces its host cell to make into separate components, which the virus then uses to keep replicating.

The new macrocycle, Kreutzer said, “sits there in the active site of the enzyme and makes it nonfunctional.”

The research goes hand-in-hand with work in the lab of Rachel Martin, also a UCI professor of chemistry, who is determining the range of shapes that the coronavirus’s main protease can take. Identifying these various structures is what allowed Nowick’s lab to design a macrocycle that can lock onto the coronavirus.

This strategy for stopping the protease, Nowick noted, is the same employed in a key class of drugs for treating human immunodeficiency virus. But because the viruses are so different, the same inhibitors can’t be used for both.

Nowick and his team named the macrocycle University of California, Irvine Coronavirus Inhibitor-1, or UCI-1, to indicate that it’s the first molecule in what will still be a long journey to create a drug to treat or prevent COVID-19.

Now that Nowick’s lab has a prototype called an “initial hit,” researchers need to make additional molecules that are more effective in blocking the protease. Then they must figure out how to actually deliver the best molecule to infected cells.

This means that, while the new macrocycle is a promising first step, Nowick said, “people need to understand that it’s a long way from a drug candidate.”

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

 

 

NOTE TO EDITORS: IMAGE AVAILABLE AT
https://news.uci.edu/2020/08/05/uci-scientists-get-initial-hit-in-developing-drug-to-treat-covid-19

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 3395
Newswise: Historical Racial & Ethnic Health Inequities Account for Disproportionate COVID-19 Impact
22-Sep-2020 4:00 PM EDT
Historical Racial & Ethnic Health Inequities Account for Disproportionate COVID-19 Impact
American Thoracic Society (ATS)

A new Viewpoint piece published online in the Annals of the American Thoracic Society examines the ways in which COVID-19 disproportionately impacts historically disadvantaged communities of color in the United States, and how baseline inequalities in our health system are amplified by the pandemic. The authors also discuss potential solutions.

Released: 24-Sep-2020 5:05 PM EDT
In-person college instruction leading to thousands of COVID-19 cases per day in US
University of Washington

Reopening university and college campuses with primarily in-person instruction is associated with a significant increase in cases of COVID-19 in the counties where the schools are located.

Newswise: Some Severe COVID-19 Cases Linked to Genetic Mutations or Antibodies that Attack the Body
Released: 24-Sep-2020 3:25 PM EDT
Some Severe COVID-19 Cases Linked to Genetic Mutations or Antibodies that Attack the Body
Howard Hughes Medical Institute (HHMI)

Two new studies offer an explanation for why COVID-19 cases can be so variable. A subset of patients has mutations in key immunity genes; other patients have auto-antibodies that target the same components of the immune system. Both circumstances could contribute to severe forms of the disease.

access_time Embargo lifts in 2 days
Embargo will expire: 25-Sep-2020 6:30 PM EDT Released to reporters: 24-Sep-2020 3:20 PM EDT

A reporter's PressPass is required to access this story until the embargo expires on 25-Sep-2020 6:30 PM EDT The Newswise PressPass gives verified journalists access to embargoed stories. Please log in to complete a presspass application. If you have not yet registered, please Register. When you fill out the registration form, please identify yourself as a reporter in order to advance to the presspass application form.

17-Sep-2020 1:15 PM EDT
Accuracy of commercial antibody kits for SARS-CoV-2 varies widely
PLOS

There is wide variation in the performance of commercial kits for detecting antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), according to a study published September 24 in the open-access journal PLOS Pathogens by Jonathan Edgeworth and Blair Merrick of Guy’s and St Thomas’ NHS Foundation Trust, Suzanne Pickering and Katie Doores of King's College London, and colleagues. As noted by the authors, the rigorous comparison of antibody testing platforms will inform the deployment of point-of-care technologies in healthcare settings and their use in monitoring SARS-CoV-2 infections.

24-Sep-2020 9:25 AM EDT
Loneliness levels high during COVID-19 lockdown
Newswise Review

During the initial phase of COVID-19 lockdown, rates of loneliness among people in the UK were high and were associated with a number of social and health factors, according to a new study published this week in the open-access journal PLOS ONE by Jenny Groarke of Queen’s University Belfast, UK, and colleagues.

Newswise: Genetic, immunological abnormalities in Type I interferon pathway are risk factors for severe COVID-19
24-Sep-2020 12:35 PM EDT
Genetic, immunological abnormalities in Type I interferon pathway are risk factors for severe COVID-19
Uniformed Services University of the Health Sciences (USU)

Individuals with severe forms of COVID-19 disease can present with compromised type I interferon (IFN) responses based on their genetics, according to results published in two papers today in the journal Science. Type I IFN responses are critical for protecting cells and the body from more severe disease after acute viral infection.

Newswise: Talking Alone: Researchers Use Artificial Intelligence Tools to Predict Loneliness
Released: 24-Sep-2020 1:45 PM EDT
Talking Alone: Researchers Use Artificial Intelligence Tools to Predict Loneliness
University of California San Diego Health

A team led by researchers at University of California San Diego School of Medicine has used artificial intelligence technologies to analyze natural language patterns to discern degrees of loneliness in older adults.


Showing results

110 of 3395

close
1.04112