Colorado State University

Using cellular networks to detect at-risk areas for spread of COVID-19

Data from existing wireless networks can pinpoint potential hotspots
30-Jun-2020 12:40 PM EDT, by Colorado State University

Newswise — In the fight against COVID-19, researchers at Colorado State University have developed a new, non-invasive strategy to identify areas at greatest risk for spreading the disease.

Led by Electrical and Computer Engineering Professor Edwin Chong, the team is drawing on data from existing cellular wireless networks to pinpoint potential hotspots for increased viral transmission.

Their technique, detailed in a paper published this month in the IEEE Open Journal of Engineering in Medicine and Biology, could help regions manage risks to avoid scenarios like the recent outbreak in New York City, where the virus inflicted devastation on one of the most densely populated areas in the country.

Coronavirus and crowds

Knowing that COVID-19 is easily spread by individuals in close proximity, Chong and his team developed a method that helps them identify the most crowded areas with hustle and bustle, such as a city center, where asymptomatic carriers have a higher probability of coming into close contact with large numbers of healthy people.

Because practically everyone carries a cell phone nowadays, they aim to understand how mobile device users move and gather over time in an area by leveraging what are known as handover and cell (re)selection protocols - the cellular network technologies that allow us to move about freely with our mobile devices without losing service. Using data collected through these networks, Chong's team measures handover and cell (re)selection activity, called HO/CS rates, to calculate localized population density and mobility. Offering real-time updates, the data allow them to flag at-risk areas for further monitoring. Their method builds on the premise that the higher the HO/CS rates, which means higher density and mobility, the higher the risk of spreading infectious diseases.

"Our findings could help risk managers with planning and mitigation," said Chong, a leading researcher in cellular wireless networks who has expertise in risk management. "It might prompt them to cordon off a busy plaza, for example, or implement stricter social distancing measures to slow the spread of the virus."

Chong said their approach could also be used to estimate the percentage of people staying home to determine whether communities are following recommended public health policies.

Protecting security and privacy

While Chong refers to mobile devices as "always-on human trackers," he is sensitive to and concerned with privacy and security issues. Unlike contact tracing applications that are often difficult to deploy and require widespread adoption, his approach protects the privacy and anonymity of individuals without needing active participation from device users.

"Our method overcomes the downsides of contact tracing apps," Chong said. "All we have to do is perform the measurements using anonymous data that is already being collected for other reasons. We are not tracking individuals."

As the nation steps up efforts to plan for future outbreaks, Chong said their technique has applications beyond COVID-19. "It can help with other epidemiological risks, such as the flu. Regardless of the disease, it's very important to have tools that help risk managers focus and prioritize to protect our citizens," he said.

###

SEE ORIGINAL STUDY




Filters close

Showing results

110 of 2448
Released: 2-Jul-2020 11:25 AM EDT
New Study Explains Potential Causes for “Happy Hypoxia” Condition in COVID-19 Patients
Loyola Medicine

A new research study provides possible explanations for COVID-19 patients who present with extremely low, otherwise life-threatening levels of oxygen, but no signs of dyspnea (difficulty breathing). This new understanding of the condition, known as silent hypoxemia or “happy hypoxia,” could prevent unnecessary intubation and ventilation in patients during the current and expected second wave of coronavirus.

Released: 2-Jul-2020 10:15 AM EDT
Stemming the Spread of Misinformation on Social Media
Association for Psychological Science

New research reported in the journal Psychological Science finds that priming people to think about accuracy could make them more discerning in what they subsequently share on social media.

29-Jun-2020 9:00 AM EDT
Coronavirus damages the endocrine system
Endocrine Society

People with endocrine disorders may see their condition worsen as a result of COVID-19, according to a new review published in the Journal of the Endocrine Society.

Released: 2-Jul-2020 8:50 AM EDT
Learn from the pandemic to prevent environmental catastrophe, scientists argue
University of Cambridge

• COVID-19 is comparable to climate and extinction emergencies, say scientists from the UK and US – all share features such as lagged impacts, feedback loops, and complex dynamics. • Delayed action in the pandemic cost lives and economic growth, just as it will with environmental crises – but on a scale “too grave to contemplate”.

Released: 1-Jul-2020 5:30 PM EDT
COVID-19 seed grants awarded to 7 ISU research projects
Iowa State University

Iowa State's COVID-19 Research Seed Grant program will support the initial stages of high-risk/high-reward projects that address the COVID-19 crisis.

Released: 1-Jul-2020 4:30 PM EDT
National Survey on COVID-19 Pandemic Shows Significant Mental Health Impact
Beth Israel Deaconess Medical Center

The findings of a nationwide survey assessing the effects of the COVID-19 pandemic on the emotional wellbeing of U.S. adults show 90 percent of survey respondents reported experiencing emotional distress related to the pandemic.

Released: 1-Jul-2020 2:40 PM EDT
Surveys Reveal Significant Shifts in Consumer Behavior During Pandemic
Rensselaer Polytechnic Institute (RPI)

The COVID-19 pandemic has significantly altered how people shop, how much they buy, the trips they take outside their homes, and the number of tele-activities — like work, medicine, and education — that have become commonplace. These changes were rapid and have tremendously impacted the economy, supply chains, and the environment. Two sets of surveys were conducted by researchers at Rensselaer Polytechnic Institute in an effort to quantify and understand these unprecedented shifts — and evaluate the likelihood they may last after the pandemic has ended.

Released: 1-Jul-2020 2:20 PM EDT
COVID-19 Fatality Risk Is Double Earlier Estimates: Study
Columbia University, Mailman School of Public Health

In one of the most robust studies of COVID-19 mortality risk in the United States, researchers estimate an infection fatality rate more than double estimates from other countries, with the greatest risk to older adults. Columbia University Mailman School of Public Health scientists and New York City Department of Health and Mental Hygiene colleagues published the findings on the pre-print server medRxiv ahead of peer review.

Released: 1-Jul-2020 2:15 PM EDT
Study Examines Limiting School Capacity for New York City Reopening
Columbia University, Mailman School of Public Health

Data modeling projections by Columbia University Mailman School of Public Health scientists evaluate potential policies to reduce new infections, hospitalizations, and deaths in coming months, including by limiting school capacity by 50 percent or capping capacity of certain industries to 25 percent during Phase Four, as well as by implementing an “adaptive PAUSE” system to re-implement social distancing rules during a rebound. The researchers have been working with the New York City Department of Health and Mental Hygiene on COVID-19 planning. Their new report is posted on Github.


Showing results

110 of 2448

close
1.3657