DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-01-05 07:30:00
    • Article ID: 627917

    2014's Top-10 Scientific Achievements at Brookhaven Lab

    • Credit: Brookhaven National Laboratory

      A calcium-leak channel prevents calcium overload in cellular organelles for protection of life. Viewing from within the membrane, the structure is shown as ribbons for the closed-conformation. (See #10)

    • Credit: Brookhaven National Laboratory

      Inside the beamline enclosure, a phosphor detector (the rectangle at right) captured the first x-rays (in white) which hit the mark dead center. (See #1)

    • Credit: Brookhaven National Laboratory

      When a mid-infrared laser pulse strikes the material (top), it "melts" these conflicting ripples and induces superconductivity (bottom). (See #9)

    UPTON, NY—From new insights into the building blocks of matter to advances in understanding batteries, superconductors, and a protein that could help fight cancer, 2014 was a year of stunning successes for the U.S. Department of Energy's Brookhaven National Laboratory. Oh, and did we mention the opening of a brand new facility that will push the limits of discovery across the scientific spectrum? For details on these and the rest of our Top-10 breakthroughs, check out the items below. You can follow Brookhaven Lab on Facebook, Twitter, and Tumblr to learn about the discoveries of 2015 as they happen.

    1. National Synchrotron Light Source II Achieves 'First Light'

    Opening a new era of scientific discovery at Brookhaven Lab, the brightest synchrotron light source in the world delivered its first x-ray beams on October 23, 2014. Soon researchers from around the world will start using the powerful x-rays produced by the National Synchrotron Light Source II (NSLS-II) to advance their research on everything from new energy storage materials to developing new drugs to fight disease. As of this writing, all seven of the initial experimental stations designed to receive x-rays from the ½-mile-circumference electron storage ring had received 'first light.' Scientists running these "beamlines" will begin experiments this year. An additional 23 beamlines are under construction or in the planning stages, and there's room at NSLS-II for 30 more. With the photons shining, 2015 promises to be a bright year for science at NSLS-II.

    2. Physicists Narrow Search for Solution to Proton Spin Puzzle

    Results from experiments at the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference particle collider at Brookhaven Lab, reveal new insights about how quarks and gluons—the subatomic building blocks of protons—contribute to proton "spin." The new precision measurements will help solve a mystery that has puzzled physicists since the 1980s, showing for the first time that gluons make a significant contribution to proton spin and that transient "sea quarks"—which form primarily when gluons split—also play a role. Pinpointing where spin comes from could yield new information about the mechanisms of the complex subatomic particle interactions within protons, the effects of spin on other properties, and perhaps even ways to control those properties for future, unforeseen applications. RHIC is the world's only facility capable of colliding spin-polarized protons to perform these precision studies.

    3. New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials

    Using a new method to track the electrochemical reactions that take place in a common electric vehicle battery material, scientists at Brookhaven have gained new insight into why fast charging inhibits this material's performance. The team used a combination of techniques to study the material under operating conditions and at the nanometer scale at the National Synchrotron Light Source (NSLS), Brookhaven's original synchrotron x-ray light source, which closed at the end of September after 32 years of successful operation. The resulting high-resolution images and electrochemical "fingerprint" show, pixel by pixel, where lithium ions remain in the material, where they've been removed, and other potentially interesting electrochemical details. The findings provide the first direct experimental evidence to support a particular model of the electrochemical reaction, and could inform battery makers' efforts to optimize materials for faster-charging batteries with higher capacity.

    4. Tracking the Transition of Early-Universe Quark Soup to Matter-as-we-know-it

    To figure out how the hot soup of subatomic particles that filled the early universe transformed into the ordinary matter of today's world, nuclear physicists run the process in reverse at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab. They accelerate ordinary atomic nuclei to close to the speed of light, and smash these ions together to recreate matter at the extreme temperatures and densities that existed just after the Big Bang. In 2014, new analyses of the particles that emerge from the trillion-degree collision zone turned up interesting details about how the transition from primordial matter to atoms takes place. In particular, the RHIC STAR collaboration's analysis over a very wide range of collision energies that can be created at this versatile facility suggests that the type of transition changes depending on the energy the particles have when they collide. Future experiments making use of recently installed detector components should help the physicists hone in on a "critical point" where that change of transition type takes place.

    5. Researchers Pump Up Oil Accumulation in Plant Leaves

    Detailed genetic studies at Brookhaven last year revealed previously unknown biochemical details about how plant leaves make and break down oils—including new ways to increase the accumulation of oil in the leaves. Increasing the oil content of leaves, plants' most abundant source of biomass, could help fulfill the nation's increasing demand for renewable energy feedstocks. Using new methods revealed by the study, the scientists grew experimental plants whose leaves accumulated 9 percent oil by dry weight—an approximately 150-fold increase in oil content compared to wild type leaves. If the scientists can replicate these results in crop plants, whose growth time is longer, they may be able to achieve oil accumulation as high as 40 percent by weight. That would be a boon for the production of biofuels, because energy-dense oils give more "bang per bushel" than less-energy-dense leaf carbohydrates.

    6. Scientists Find Solution to Two Long-Standing Mysteries of Cuprate High-Temperature Superconductivity

    A team led by scientists at Brookhaven Lab and Cornell University trying to unravel the intricacies of high-temperature superconductivity—the ability of certain materials to carry electrical current with no energy loss—has been particularly puzzled by a mysterious phase that appears to compete with superconductivity. Now, using precision techniques they've revealed detailed characteristics of the electrons in one of these materials as it transforms from an insulator through the mysterious "pseudogap" phase and eventually into a full-blown superconductor. The results link two distinct personality changes in the material's electrons—the disappearance of an exotic periodic arrangement of certain electrons within the pseudogap phase (sometimes referred to as "stripes"), and the sudden ability of all the material's electrons to move freely in any direction. The finding could be a significant step toward unlocking the potential of these materials for energy-saving applications.

    7. Physicists Detect Process Even Rarer than the Long-Sought Higgs Particle

    Scientists running the ATLAS experiment at the Large Hadron Collider (LHC), the world's largest and most powerful "atom smasher," including a large contingent from Brookhaven Lab, report the first evidence of a process that can be used to test the mechanism by which the recently discovered Higgs particle imparts mass to other fundamental particles. More rare than the production of the Higgs itself, this process—a scattering of two same-charged particles called W bosons off one another—also provides a new stringent test of the Standard Model of particle physics. Brookhaven physicists involved in the analysis say the results so far are in good agreement with what's predicted by the Standard Model and its description of how the Higgs works. But the team is looking forward to more detailed studies using the vastly expanded datasets that will be generated when the LHC begins operating at significantly higher energies in the spring of 2015.

    8. Scientists Pinpoint the Creeping Nanocrystals Behind Lithium-Ion Battery Degradation

    To stop or slow the steady degradation of the lithium-ion batteries that power our portable electronics, scientists must track and tweak their imperfect chemistry with nanoscale precision. Recent studies to map these crucial billionths-of-a-meter dynamics—conducted in part using world-leading electron microscopy techniques at Brookhaven's Center for Functional Nanomaterials—revealed surprising and never-before-seen evolution and degradation patterns. Contrary to large-scale observation, the nanoscale studies reveal that the lithium-ion reactions erode the materials non-uniformly, seizing upon intrinsic vulnerabilities in atomic structure in the same way that rust creeps unevenly across stainless steel. Armed with a precise map of the materials' erosion, the scientists can plan new ways to break the patterns and improve performance.

    9. Scientists Capture Ultrafast Snapshots of Light-driven Superconductivity

    In another step toward improved understanding of high-temperature superconductors, a team led by scientists from the Max Planck Institute for the Structure and Dynamics of Matter in Germany, SLAC National Accelerator Laboratory, and Brookhaven used carefully timed laser pulses at SLAC's Linac Coherent Light Source (LCLS) to take x-ray snapshots of the atomic and electronic structure inside a promising copper-oxide material just as superconductivity emerged. They discovered that so-called "charge stripes" of increased electrical charge melted away as superconductivity appeared. Further, the results help rule out the theory that shifts in the material's atomic lattice hinder the onset of superconductivity. Armed with this new understanding, scientists may be able to develop new techniques to eliminate charge stripes and help pave the way for room-temperature superconductivity. The demonstrated ability to rapidly switch between the insulating and superconducting states could also prove useful in advanced electronics and computation.

    10. Scientists Reveal Details of Calcium 'Safety-Valve' in Cells

    The accumulation of calcium in cells is a key signaling agent that can trigger programmed cell death, or apoptosis. Understanding what happens when this process goes awry could lead to new ways to control uncontrolled cell growth, a hallmark of cancer. Toward that goal, a team of scientists from Brookhaven Lab, Columbia University, New York University, Baylor College of Medicine, Technical University of Munich, and the New York Structural Biology Center used x-rays at Brookhaven's National Synchrotron Light Source (NSLS) to decipher the structure of a key cellular protein that serves as a molecular safety valve for keeping calcium levels steady. The protein works similar to a pressure safety value used in a standard steam boiler, allowing gradual leakage of calcium and adjusting the flow in response to changes in acidity in the cell. Designing drugs that inhibit this protein would cause calcium levels to rise and promote cell death—a potentially promising strategy for fighting cancers in which such proteins are overexpressed.

    These studies and projects were supported primarily by the DOE Office of Science. NSLS, NSLS-II, RHIC, CFN and LCLS are DOE Office of Science User Facilities. See links to full stories for additional information, including other funding sources.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    • Filters

    • × Clear Filters

    Stronger, lighter, greener

    A new award-winning magnet technology invented at the U.S. Department of Energy's Argonne National Laboratory could help drive the nation's transition from gas-powered vehicles to electric and hybrid power more rapidly, at lower cost, and in a more environmentally friendly way.

    Science Up-Close: Developing a Cookbook for Efficient Fusion Energy

    To develop a future fusion reactor, scientists need to understand how and why plasma in fusion experiments moves into a "high-confinement mode" where particles and heat can't escape. Scientists at the Department of Energy's Princeton Plasma Physics Laboratory simulated the transition into that mode starting from the most basic physics principles.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Neutron science publications reach new highs at ORNL's flagship facilities

    The High Flux Isotope Reactor and the Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory have reached new levels of increased science productivity. In 2018, a record high of more than 500 scientific instrument publications were produced between HFIR and SNS--based on neutron beamline experiments conducted by more than 1,200 US and international researchers who used the world-leading facilities.

    Fiery sighting: A new physics of eruptions that damage fusion experiments

    Feature describes first direct sighting of a trigger for bursts of heat that can disrupt fusion reactions.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    An effect that Einstein helped discover 100 years ago offers new insight into a puzzling magnetic phenomenon

    Experiments at the Department of Energy's SLAC National Accelerator Laboratory have seen for the first time what happens when magnetic materials are demagnetized at ultrafast speeds of millionths of a billionth of a second: The atoms on the surface of the material move, much like the iron bar did. The work, done at SLAC's Linac Coherent Light Source (LCLS) X-ray laser, was published in Nature earlier this month.

    Found: A precise method for determining how waves and particles affect fusion reactions

    Like surfers catching ocean waves, particles within plasma can ride waves oscillating through the plasma during fusion energy experiments. Now a team of physicists led by PPPL has devised a faster method to determine how much this interaction contributes to efficiency loss in tokamaks.

    Discovery adapts natural membrane to make hydrogen fuel from water

    In a recent study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen.

    How Plants Regulate Sugar Deposition in Cell Walls

    Identified genes involved in plant cell wall polysaccharide production and restructuring could aid in engineering bioenergy crops.

    • Filters

    • × Clear Filters

    Top 10 Discoveries of 2018

    Every year, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory compiles a list of the biggest advances made by the Lab's staff scientists, engineers, and visiting researchers. From uncovering mysteries of the universe to building better batteries, here, in no particular order, are our picks for the top 10 discoveries of 2018.

    U.S. Department of Energy Announces $33 Million for Small Business Research and Development Grants

    The U.S. Department of Energy announced it will award 189 grants totaling $33 million to 149 small businesses in 32 states.

    DOE to Provide $16 Million for New Research into Atmospheric and Terrestrial Processes

    The U.S. Department of Energy (DOE) announced a plan to provide $16 million for new observational research aimed at improving the accuracy of today's climate and earth system models.

    Machine learning award powers Argonne leadership in engine design

    When attempting to design engines to be more fuel-efficient and emissions-free, automotive manufacturers have to take into account all the complexity inherent in the combustion process.

    ORNL partners with industry to address multiple nuclear technology challenges

    The Department of Energy's Oak Ridge National Laboratory is collaborating with industry on six new projects focused on advancing commercial nuclear energy technologies that offer potential improvements to current nuclear reactors and move new reactor designs closer to deployment.

    Lithium earns honors for three physicists working to bring the energy that powers the sun to Earth

    Feature describes research of three PPPL physicists who have won the laboratory's 2018 outstanding research awards

    DOE approves technical plan and cost estimate to upgrade Argonne facility; Project will create X-rays that illuminate the atomic scale, in 3D

    The U.S. Department of Energy has approved the technical scope, cost estimate and plan of work for an upgrade of the Advanced Photon Source, a major storage-ring X-ray source at Argonne.

    Costas Soukoulis elected to National Academy of Inventors

    Costas Soukoulis, Ames Laboratory senior scientist and Iowa State University Frances M. Craig Endowed Chair and Distinguished Professor, has been named as a 2018 National Academy of Inventors (NAI) Fellow.

    Biophysicist F. William Studier Elected Fellow of the National Academy of Inventors

    F. William Studier, a Senior Biophysicist Emeritus at the U.S. Department of Energy's Brookhaven National Laboratory and Adjunct Professor of Biochemistry at Stony Brook University, has been elected as a Fellow of the National Academy of Inventors (NAI). He is among 148 renowned academic inventors being recognized by NAI for 2018.

    Blast to the future

    A grant from DOE's Technology Commercialization Fund will help researchers at Argonne and industry partners seek improvements to U.S. manufacturing by making discovery and design of new materials more efficient.

    • Filters

    • × Clear Filters

    Rapid Lake Draining on Ice Sheets Changes How Water Moves in Unexpected Ways

    Widespread fracturing during lake drainage triggers vertical shafts to form that affect the Greenland Ice Sheet.

    New Historical Emissions Trends Estimated with the Community Emissions Data System

    The data system will allow for more detailed, consistent, and up-to-date global emissions trends that will aid in understanding aerosol effects.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    New Method Knocks Out Yeast Genes with Single-Point Precision

    Researchers can precisely study how different genes affect key properties in a yeast used industrially to produce fuel and chemicals.

    How Plants Regulate Sugar Deposition in Cell Walls

    Identified genes involved in plant cell wall polysaccharide production and restructuring could aid in engineering bioenergy crops.

    Scientists Identify Gene Cluster in Budding Yeasts with Major Implications for Renewable Energy

    How yeast partition carbon into a metabolite may offer insights into boosting production for biofuels.

    More Designer Peptides, More Possibilities

    A combined experimental and modeling approach contributes to understanding small proteins with potential use in industrial, therapeutic applications.

    Deep Learning for Electron Microscopy

    Artificial intelligence on Summit to discover atomic-scale structures.

    Clarifying Rates of Methylmercury Production

    New model provides more accurate estimates of how fast microbes produce a mercury-based neurotoxin.


    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Showing results

    0-4 Of 2215