DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-01-27 05:00:00
    • Article ID: 628713

    Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories

    Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks

    • Credit: MIT

      Building quantum memories on a chip: Diamond photonic crystal cavities (ladder-like structures) are integrated on a silicon substrate. Green laser light (green arrow) excites electrons on impurity atoms trapped within the cavities, picking up information about their spin states, which can then be read out as red light (red arrow) emitted by photoluminescence from the cavity. The inset shows the nitrogen-vacancy (NV)-nanocavity system, where a nitrogen atom (N) is substituted into the diamond crystal lattice in place of a carbon atom (gray balls) adjacent to a vacancy (V). Layers of diamond and air keep light trapped within these cavities long enough to interact with the nitrogen atom's spin state and transfer that information via the emitted light.

    • Credit: MIT

      A scanning electron micrograph of one of the one-dimensional diamond crystal cavities.

    • Similar to these funhouse mirrors, diamond crystal nanocavities reflect and trap light around an impurity atom in the diamond crystal lattice so that the light can more readily pick up and transmit information about the atom's spin state. This spin-photon interaction is essential for quantum computing applications.

    • Credit: MIT

      Members of the MIT team (l to r): Luozhou Li, Dirk Englund, Michael Walsh, Edward Chen, and Tim Schroder.

    Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories

    Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks

    UPTON, NY - The idea of computing systems based on controlling atomic spins just got a boost from new research performed at the Massachusetts Institute of Technology (MIT) and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory. By constructing tiny "mirrors" to trap light around impurity atoms in diamond crystals, the team dramatically increased the efficiency with which photons transmit information about those atoms' electronic spin states, which can be used to store quantum information. Such spin-photon interfaces are thought to be essential for connecting distant quantum memories, which could open the door to quantum computers and long-distance cryptographic systems.

    Crucially, the team demonstrated a spin-coherence time (how long the memory encoded in the electron spin state lasts) of more than 200 microseconds-a long time in the context of the rate at which computational operations take place. A long coherence time is essential for quantum computing systems and long-range cryptographic networks.

    "Our research demonstrates a technique to extend the storage time of quantum memories in solids that are efficiently coupled to photons, which is essential to scaling up such quantum memories for functional quantum computing systems and networks," said MIT's Dirk Englund, who led the research, now published in Nature Communications. Scientists at the Center for Functional Nanomaterials (CFN http://www.bnl.gov/cfn/), a DOE Office of Science User Facility at Brookhaven Lab, helped to fabricate and characterize the materials.

    Impurities trapped in diamond

    The memory elements described in this research are the spin states of electrons in nitrogen-vacancy (NV) centers in diamond. The NV consists of a nitrogen atom in the place of a carbon atom, adjacent to a crystal vacancy inside the carbon lattice of diamond. The up or down orientation of the electron spins on these NV centers can be used to encode information in a way that is somewhat analogous to how the charge of many electrons is used to encode the "0"s and "1"s in a classical computer.

    The scientists preferentially orient the NV's spin, whose direction is naturally randomly oriented, along a particular direction. This step prepares a quantum state of "0". From there, scientists can manipulate the electron spins into "1" or back into "0" using microwaves. The "0" state has brighter fluorescence than the "1" state, allowing scientists to measure the state in an optical microscope.

    The trick is getting the electron spins in the NV centers to hold onto the stable spin states long enough to perform these logic-gate operations-and being able to transfer information among the individual memory elements to create actual computing networks.

    "It is already possible to transfer information about the electron spin state via photons, but we have to make the interface between the photons and electrons more efficient. The trouble is that photons and electrons normally interact only very weakly. To increase the interaction between photons and the NV, we build an optical cavity-a trap for photons-around the NV," Englund said.

    Light and mirrors

    These cavities, nanofabricated at Brookhaven by MIT graduate student Luozhou Li with the help of staff scientist Ming Lu of the CFN, consist of layers of diamond and air tightly spaced around the impurity atom of an NV center. At each interface between the layers there's a little bit of reflection-like the reflections from a glass surface. With each layer, the reflections add up-like the reflections in a funhouse filled with mirrors. Photons that enter these nanoscale funhouses bounce back and forth up to 10,000 times, greatly enhancing their chance of interacting with the electrons in the NV center. This increases the efficiency of information transfer between photons and the NV center's electron spin state.

    The devices' performance was characterized in part using optical microscopy in a magnetic field at the CFN, performed by CFN staff scientist Mircea Cotlet, Luozhou Li, and Edward Chen, who is also a graduate student studying under the guidance of Englund at MIT.

    "Coupling the NV centers with these optical resonator cavities seemed to preserve the NV spin coherence time-the duration of the memory," Cotlet said.

    Added Englund: "These methods have given us a great starting point for translating information between the spin states of the electrons among multiple NV centers. These results are an important part of validating the scientific promise of NV-cavity systems for quantum networking."

    In addition, said Li, "The transferred hard mask lithography technique that we have developed in this work would benefit most unconventional substrates that aren't suitable for typical high-resolution patterning by electron beam lithography. In our case, we overcame the problem that hundred-nanometer-thick diamond membranes are too small and too uneven. "

    The methods may also enable the long-distance transfer of quantum-encoded information over fiber optic cables. Such information could be made completely secure, Englund said, because any attempt to intercept or measure the transferred information would alter the photons' properties, thus alerting the sender and the recipient to the possible presence of an eavesdropper.

    Fabrication and experiments were supported in part by the Air Force Office of Scientific Research. The CFN at Brookhaven Lab is supported by the DOE Office of Science. Additional funding for individual researchers came from the Alexander von Humboldt Foundation, the NASA Office of the Chief Technologist's Space Technology Research Fellowship, and the National Science Foundation.

    SIDEBAR: Working Together: Benefits for Facility Users, Students, and CFN

    "At the CFN," said longtime facility user Dirk Englund of MIT, "we can do things that are very difficult or impossible in a normal university setting. Developing a radically new process, like our processing of diamond quantum memories, has been so successful at the CFN because of the consistency in the fabrication tools, the wide range of characterization tools, and the expert knowledge."

    His students agree: "We got a lot of technical support and scientific guidance from CFN research scientists, who are willing to help early-year students start their research careers," said MIT graduate student Luozhou Li. In addition, he said, "CFN has all the advanced nanofabrication and confocal facilities centralized in one place. It is convenient and efficient to step from one room to another, finish the device fabrication in a clean-room environment and measure optical properties quickly."

    Edward Chen, the other MIT grad student involved in this work, appreciated the chance to see first-hand the benefits of working in an interdisciplinary atmosphere at Brookhaven Lab, where state-of-the-art facilities like the CFN and the new National Synchrotron Light Source II (NSLS-II) can be found side-by-side. "I hope to continue finding ways to improve the nanofabrication process we developed for this research so that I can potentially take advantage of other unique facilities available at Brookhaven Lab," he said.

    The benefits go both ways, said CFN staff scientist, Mircea Cotlet. "We now have a new method we can use and pass on to future users," he said, referring to the electron spin resonance microscopy techniques used to measure the spin-dependent fluorescence of the NV centers and resonators explored in this study.

    On a more personal note, Cotlet added, "I have never worked with such challenging students." The collaboration, he said, helped invigorate his work. "I learned a lot from them. They make you realize you don't have all the answers."

    Continuing to stimulate that kind of intellectual interaction for the benefit of science and society is what research at DOE user facilities like the CFN is all about.

    ***

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab, or find us on Facebook, http://www.facebook.com/BrookhavenLab/.

    ***

    MEDIA CONTACTS: Karen McNulty Walsh, kmcnulty@bnl.gov, 631-344-8350, or Peter Genzer, genzer@bnl.gov, 631-344-3174

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Today's forecast: How to predict crucial plasma pressure in future fusion facilities

    Today's forecast: How to predict crucial plasma pressure in future fusion facilities

    Feature describes improved model for forecasting the crucial balance of pressure at the edge of a fusion plasma.

    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    Plastics, Fuels and Chemical Feedstocks From CO2? They're Working on It

    Plastics, Fuels and Chemical Feedstocks From CO2? They're Working on It

    Four SUNCAT scientists describe recent research results related to the quest to capture CO2 from the smokestacks of factories and power plants and use renewable energy to turn it into industrial feedstocks and fuels.

    Getting a look under the hood of topological insulators

    Getting a look under the hood of topological insulators

    Because of topological insulators' unique electronic properties and their potential use in spintronic devices and even conceivably as transistors for quantum computers, scientists at the U.S. Department of Energy's Argonne National Laboratory investigated the dynamics of the conducting surface electrons in these materials.

    New Investigation Cuts Through the Haze Surrounding "Smoke-Free" Tobacco Products

    New Investigation Cuts Through the Haze Surrounding "Smoke-Free" Tobacco Products

    Marketed as a healthier alternative to cigarettes, a new class of tobacco products called heat-not-burn devices is quickly gaining in popularity across the globe. A study by Berkeley Lab's Indoor Environment Group shows that

    Scientists couple magnetization to superconductivity for quantum discoveries

    Scientists couple magnetization to superconductivity for quantum discoveries

    In a recent study, scientists at the U.S. Department of Energy's Argonne National Laboratory have created a miniaturized chip-based superconducting circuit that couples quantum waves of magnetic spins called magnons to photons of equivalent energy.

    Story tips from the Department of Energy's Oak Ridge National Laboratory, September 2019

    Story tips from the Department of Energy's Oak Ridge National Laboratory, September 2019

    ORNL story tips: ORNL's project for VA bridges computing prowess, VA health data to speed up suicide risk screenings for U.S. veterans; ORNL reveals ionic liquid additive lubricates better than additives in commercial gear oil; researchers use neutron scattering to probe colorful new material that could improve sensors, vivid displays; unique 3D printing approach adds more strength, toughness in certain materials.

    Study Reveals 'Radical' Wrinkle in Forming Complex Carbon Molecules in Space

    Study Reveals 'Radical' Wrinkle in Forming Complex Carbon Molecules in Space

    A team of scientists has discovered a new possible pathway toward forming carbon structures in space using a specialized chemical exploration technique at Berkeley Lab's Advanced Light Source.

    SMART Algorithm Makes Beamline Data Collection Smarter

    SMART Algorithm Makes Beamline Data Collection Smarter

    Researchers in Lawrence Berkeley National Laboratory's Center for Advanced Mathematics for Energy Research Applications have been working with beamline scientists at Brookhaven National Laboratory to develop and test SMART, a mathematical method that enables autonomous experimental decision making without human interaction.

    The Chemistry of Art: Scientists Explore Aged Paint in Microscopic Detail to Inform Preservation Efforts

    The Chemistry of Art: Scientists Explore Aged Paint in Microscopic Detail to Inform Preservation Efforts

    To learn more about the chemical processes in oil paints that can damage aging artwork, a team led by researchers at the National Gallery of Art and the National Institute of Standards and Technology conducted a range of studies that included 3D X-ray imaging of a paint sample at Berkeley Lab's Advanced Light Source.


    • Filters

    • × Clear Filters
    Super Computing

    Super Computing

    The U.S. Department of Energy's Oak Ridge National Lab (ORNL) is building the Frontier supercomputer and eight teams of scientists have been chosen by the Oak Ridge Leadership Computing Facility (OLCF) to develop applications for the new machine. One of them will be led by UD's Sunita Chandrasekaran, an assistant professor of computer and information sciences.

    DOE awards Argonne $4.15 million for research in quantum computing and networking

    DOE awards Argonne $4.15 million for research in quantum computing and networking

    The U.S. Department of Energy (DOE) has recently awarded Argonne National Laboratory a total of $4.15 million for research in quantum computing and networking as part of the 2019 Advanced Scientific Computing Research (ASCR) Quantum Computing and Quantum Network Awards. The awards will fund three multi-year projects aimed at securing the nation's leadership in the field of quantum information science.

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne organization's scholarship fund blazes STEM pathway

    In the past 10 years, Argonne's Hispanic/Latino club has awarded more than $35,000 in education funds to area youth. In 2015, Noemy Escamilla was one of those recipients. Escamilla was awarded a summer 2019 internship, and serendipitously chosen to work alongside the very people who chose her for the scholarship years before.

    ESnet a Key Partner on Project to Build Novel Network Research Infrastructure

    ESnet a Key Partner on Project to Build Novel Network Research Infrastructure

    Berkeley Lab's ESnet is one of five organizations leading an effort to create a nationwide research infrastructure that will enable the computer science and networking community to develop and test novel architectures that could yield a faster, more secure internet.

    New round of DOE awards bolsters quantum information science at SLAC

    New round of DOE awards bolsters quantum information science at SLAC

    Researchers at the Department of Energy's SLAC National Accelerator Laboratory have received two DOE awards to explore how quantum information can be passed from one quantum device to another. The goal: develop ways to link quantum devices into quantum computing networks that are much more powerful than today's technology and into innovative photon detectors that could open up new areas of research, such as novel searches for dark matter.

    DOE awards ORNL researchers more than $11 million to advance quantum technologies

    DOE awards ORNL researchers more than $11 million to advance quantum technologies

    Three researchers at Oak Ridge National Laboratory will lead or participate in collaborative research projects aimed at harnessing the power of quantum mechanics to advance a range of technologies including computing, fiber optics and network communication.

    Volker Burkert Named Virginia Outstanding Scientist

    Volker Burkert Named Virginia Outstanding Scientist

    Volker Burkert has been named a Virginia Outstanding Scientist for 2019.

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    UPTON, NY--The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has collaborated with the Girl Scouts of Suffolk County to organize a new patch program that encourages Girl Scouts of all ages to delve into the world of science, technology, engineering, and mathematics (STEM). Starting today, Suffolk County Girl Scouts can earn three new Brookhaven Lab patches.

    Chain Reaction Innovations announces expanded call for applications to join its 4th Cohort of innovators at Argonne

    Chain Reaction Innovations announces expanded call for applications to join its 4th Cohort of innovators at Argonne

    Chain Reaction Innovations, the entrepreneurship program at Argonne National Laboratory, is expanding beyond advanced manufacturing and now open to any technology area that can be accelerated to market by leveraging resources available at Argonne.

    DOE announces funding for Argonne projects on better materials and chemistry through data science

    DOE announces funding for Argonne projects on better materials and chemistry through data science

    The Department of Energy has announced Argonne National Laboratory will be receiving funding for two new projects in data science to accelerate discovery in chemistry and material sciences.


    • Filters

    • × Clear Filters
    Microbial Evolution: Nature Leads, Nurture Supports

    Microbial Evolution: Nature Leads, Nurture Supports

    Based on an extensive study across environments, from mixed conifer forest to high-desert grassland, the team suggests that microbes aren't so different from larger, more complex forms of life. That is, in determining species traits, nature takes the lead, while nurture plays a supporting role.

    Building a Scale to Weigh Superheavy Elements

    Building a Scale to Weigh Superheavy Elements

    Scientists made the first direct, definitive measurement of the weight, also known as the mass number, for two superheavy nuclei.

    Survey Delivers on Dark Energy with Multiple Probes

    Survey Delivers on Dark Energy with Multiple Probes

    The Dark Energy Survey has combined its four primary cosmological probes for the first time in order to constrain the properties of dark energy.

    Crossing the Great Divide Between Model Studies and Applied Reactors in Catalysis

    Crossing the Great Divide Between Model Studies and Applied Reactors in Catalysis

    A team devised a way to bridge the gap between two extremes. Using their approach, they can predict catalyst performance across a wider range of temperatures and pressures.

    Tiny, Sugar-Coated Sheets Selectively Target Pathogens

    Tiny, Sugar-Coated Sheets Selectively Target Pathogens

    Researchers developed molecular flypaper that recognizes and traps viruses, bacteria, and other pathogens.

    Getting Metal Under Graphite's Skin

    Getting Metal Under Graphite's Skin

    Some metals need to be protected from the atmosphere. Exposure leads to damage that ruins their unique properties. Controllably forming metal islands just under the surface of graphite protects the metals. This allows these metals to take on new roles in ultrafast quantum computers. It also means new roles in magnetic, catalytic, or plasmonic materials.

    Atomically Packed Boundaries Resist Cracking

    Atomically Packed Boundaries Resist Cracking

    Scientists devised specialized X-ray mapping techniques. They determined that boundaries associated with regions where atoms are closely packed together most readily resist cracking. This analysis revealed that when a crack encounters such a boundary, it's deflected to a less direct path and crack growth is slowed.

    End-run Spreads Lithium Throughout Battery Electrodes

    End-run Spreads Lithium Throughout Battery Electrodes

    Scientists used chemically sensitive X-ray microscopy to map lithium transport during battery operation.

    Knowledgebase Is Power for Nuclear Reactor Developers

    Knowledgebase Is Power for Nuclear Reactor Developers

    Six new nuclear reactor technologies are planned to commercially deploy between 2030 and 2040. ORNL's Weiju Ren heads a project managing structural materials information. This conversation explores challenges and opportunities in sharing nuclear materials knowledge internationally.

    Excited Atoms Rush Independently to New Positions

    Excited Atoms Rush Independently to New Positions

    How atoms react to a sudden burst of light shows scientists how the larger material might act in sensors, data storage devices, and more.


    Spotlight

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)





    Showing results

    0-4 Of 2215