DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-02-11 07:30:00
    • Article ID: 629540

    Smashing Polarized Protons to Uncover Spin and Other Secrets

    Relativistic Heavy Ion Collider starts 15th year of nuclear physics operations

    • Credit: Brookhaven National Laboratory

      The Relativistic Heavy Ion Collider at Brookhaven National Laboratory is the only facility in the world capable of colliding beams of spin-polarized protons—either with one another or with a range of heavier ions.

    • Credit: Brookhaven National Laboratory

      RHIC’s polarized proton collisions are offering insight into how the spins of the internal building blocks of a proton — the quarks and antiquarks (balls with arrows) and gluons (yellow “springs”) — contribute to the overall proton spin, as well as whether and how much the orbital and transverse “bouncing” motions of these individual particles also contribute to spin.

    • Credit: Brookhaven National Laboratory

      Spiraling magnets called Siberian snakes, placed at strategic locations along the chain of magnets that make up the RHIC accelerator, regularly flip the protons’ spin direction from up to down and vice versa to correct for depolarizing effects.

    • Credit: Brookhaven National Laboratory

      At RHIC, collisions of protons polarized transverse to their direction of travel (say, with the polarization axis facing up) with an unpolarized proton beam (where the proton spins can be pointing in any direction) result in an imbalance in the probability for a particle created in the collision to go to the left versus to the right. Run 15 will help physicists explore the source of this phenomenon, which could be connected to the transverse momentum of the quarks and gluons inside the proton.

    • Credit: Brookhaven National Laboratory

      Colliding polarized protons with heavier nuclei will offer insight into gluon walls postulated to exist within the nuclei. Analysis of jets of particles streaming out of these collisions with a preference for one direction over another will help scientists tease out how the gluons’ density is distributed inside the nucleus.

    For release on 2/11/2015

    Smashing Polarized Protons to Uncover Spin and Other Secrets

    Relativistic Heavy Ion Collider starts 15th year of nuclear physics operations

    UPTON, NY — If you want to unravel the secrets of proton spin, put a “twist” in your colliding proton beams. This technique, tried and perfected at the Relativistic Heavy Ion Collider (RHIC)—a particle collider and U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory—orients the colliding protons’ spins in a particular direction, somewhat like tiny bar magnets with their North poles all pointing up.

    Changing that direction and colliding different combinations of these spin-polarized proton beams gives scientists a way to decipher how the protons’ internal building blocks—quarks and gluons—contribute to their overall spin. RHIC is the only facility in the world with the ability to collide such polarized protons. The latest round of these collisions has just begun and will continue for approximately the next nine weeks.

    Run 15 will produce higher collision rates than in previous years, thanks to a number of machine upgrades at RHIC.

    For example, recently installed electron lenses will help keep proton beams tightly bunched to maximize the chances of the particles colliding.

    “When protons pass by each other, their positive charges make the protons in one beam repel those in the other,” explained Wolfram Fischer Accelerator Division Head for Brookhaven’s Collider-Accelerator Department. “Electron lenses use the attractive force of negatively charged electrons to compensate for this repulsive tendency and thereby allow more protons to be packed into the beams.”

    Deconstructing proton spin

    The mystery of the source of proton spin has puzzled nuclear physicists ever since experiments in the 1980s showed that the spins of quarks and antiquarks could account for, at most, a third of the proton’s total spin. “One main goal of RHIC’s energetic polarized-proton collisions is to increase the precision of our measurements so we can better tease out the contribution from the gluons’ spin,” said Jamie Dunlop, Associate Chair for Nuclear Physics in Brookhaven’s Physics Department.

    By sending the protons through spiral-cut magnets called Siberian snakes—which regularly flip the protons’ spin direction from up to down and vice versa to correct for depolarizing effects—and spin rotator magnets located on either side of RHIC’s two particle detectors, the scientists can twist and turn the beam to orient the proton’s spins pretty much any way they like. So far, these experiments at RHIC have revealed that gluon spins play a crucial role in proton spin, nearly equal to that of the quark and anti-quark spins. The new precision measurements will help clarify just how big that contribution is.

    Another key goal is to define and determine why, in transversely polarized proton-proton collisions, there is an imbalance in the way certain particles are deflected in one direction rather than another.

    “When you collide an unpolarized proton beam (where the proton spins can be pointing in any direction) with a proton polarized transverse to its direction of travel (say, with its polarization axis facing up), there is a net deflection—an imbalance in the probability for a particle to go to the left versus to go to the right—just like when a ball hits a spinning fan,” said Dunlop. “The effect at RHIC is huge,” he said, with up to twice as many particles going to one side as opposed to the other.

    The source of this phenomenon is still unclear, despite its strength and despite more than a decade of measurements.

    “Some scientists think it could be connected to the transverse momentum of the quarks and gluons inside the proton—a bouncing kind of motion of these subcomponents that is perpendicular to the protons’ direction of travel,” said Brookhaven physicist Elke Aschenauer, a leader in the spin program at RHIC. “The polarization of RHIC’s beams makes it possible to visualize this motion by measuring the tendency of particles to come out to the left versus right.”

    Using polarized protons to probe heavier ions

    After the initial nine-week part of the run, RHIC physicists will begin a series of experiments they’ve never done before—collisions of polarized protons in one beam with a beam of heavier ions (first gold, for about five weeks, then a shorter two-week run with aluminum). These collisions will help the scientists search for indications of gluon saturation—dense gluon fields predicted by theorists to exist in the nuclei and hinted at in results from early deuteron-gold collisions at RHIC and, more recently, proton-lead collisions at the Large Hadron Collider (LHC).

    These gluon fields could play an important role in proton spin and also in the formation of quark-gluon plasma—where the protons and neutrons in two colliding ion beams melt to form a seething soup of quark and gluon building blocks no longer confined within individual nuclei. Recent data at RHIC and the LHC have given hints that tiny droplets of quark-gluon plasma may even be formed in collisions of protons (or deuterons) with larger nuclei.

    “A crucial test to see whether this is the case would be to engineer the formation of one, two, or three droplets via collisions of protons, deuterons, or helium-3 projectiles with larger nuclei,” said University of Colorado physicist Jamie Nagle, a co-spokesperson for the PHENIX collaboration at RHIC. “With deuteron and helium results already in hand, data from proton-heavy ion collisions in Run 15 will complete the set of these initial tests.”

    In addition, said Aschenauer, “RHIC’s unique ability to collide polarized protons with heavy nuclei provides the only opportunity in the world to get a first look at the orbital momentum of gluons inside the proton.” Orbital momentum describes how the gluons move around within the proton—a separate characteristic from their spin, which is more analogous to rotation around an internal axis. These collisions therefore provide a window through which physicists can view another possible contribution to the proton spin puzzle.

    “We do this,” she explained, “by looking at the production of rare J/psi particles, which are produced when two gluons merge. If these particles emerge with a preference for the left or right direction with respect to the polarization direction of the proton beam, it tells something about how the gluons were moving around inside the proton.”

    RHIC scientists will also make improved measurements of “direct photons,” particles of light that emerge directly from the collisions without any interactions with the rest of the particles created in the particle smashups. These particles give the most direct insight into the conditions created within the collision zone, including the orbital motion of quarks (in proton-proton collisions) and the role of gluon fields (in collisions of protons with larger nuclei).

    Detector upgrades

    Many of these measurements will be made possible by upgrades designed specifically for this purpose at RHIC’s two sophisticated particle detectors, PHENIX and STAR.

    For example, STAR and PHENIX have both installed novel detector technologies to help analyze particles that emerge from RHIC collisions in the forward direction—close to and along the direction of the beamline.

    “PHENIX has pushed the boundaries of photon detection with a compact tungsten-silicon hybrid detector called the MPC-EX,” said PHENIX Deputy Spokesperson John Lajoie, a professor at Iowa State University. “This detector combines the high density of tungsten with the fine spatial resolution of silicon to separate very closely spaced particles. With this novel new detector, PHENIX will be able to separate direct photons from sources of background that would otherwise overwhelm the signal.”

    STAR has a preshower detector installed in front of the forward meson spectrometer. “This is the first large-scale implementation at RHIC using next-generation silicon photomultipliers for the detection of scintillator light emitted by plastic scintillators, which create light when charged particles pass through them,” Dunlop said. “It replaces a technology much like vacuum tubes that has been used for decades to precisely detect small amounts of light. Only recently has solid-state technology gotten to this point,” he said. The silicon photomultiplier technology may also be incorporated into a future upgrade to PHENIX, which will further expand RHIC’s capabilities.

    “All of these advances to the collider and its detectors showcase the value of RHIC as a testing ground for new technologies that may prove to be useful for other colliders and future research projects at and beyond Brookhaven Lab,” Dunlop said.

    Research at RHIC is funded primarily by the DOE Office of Science, and also by these agencies and organizations: http://www.bnl.gov/rhic/funding.asp.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab, or find us on Facebook, http://www.facebook.com/BrookhavenLab/.

    X
    X
    X
    • Filters

    • × Clear Filters

    A Challenging Future for Tropical Forests

    Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

    Stronger, lighter, greener

    A new award-winning magnet technology invented at the U.S. Department of Energy's Argonne National Laboratory could help drive the nation's transition from gas-powered vehicles to electric and hybrid power more rapidly, at lower cost, and in a more environmentally friendly way.

    Science Up-Close: Developing a Cookbook for Efficient Fusion Energy

    To develop a future fusion reactor, scientists need to understand how and why plasma in fusion experiments moves into a "high-confinement mode" where particles and heat can't escape. Scientists at the Department of Energy's Princeton Plasma Physics Laboratory simulated the transition into that mode starting from the most basic physics principles.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Neutron science publications reach new highs at ORNL's flagship facilities

    The High Flux Isotope Reactor and the Spallation Neutron Source at the Department of Energy's Oak Ridge National Laboratory have reached new levels of increased science productivity. In 2018, a record high of more than 500 scientific instrument publications were produced between HFIR and SNS--based on neutron beamline experiments conducted by more than 1,200 US and international researchers who used the world-leading facilities.

    Fiery sighting: A new physics of eruptions that damage fusion experiments

    Feature describes first direct sighting of a trigger for bursts of heat that can disrupt fusion reactions.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    An effect that Einstein helped discover 100 years ago offers new insight into a puzzling magnetic phenomenon

    Experiments at the Department of Energy's SLAC National Accelerator Laboratory have seen for the first time what happens when magnetic materials are demagnetized at ultrafast speeds of millionths of a billionth of a second: The atoms on the surface of the material move, much like the iron bar did. The work, done at SLAC's Linac Coherent Light Source (LCLS) X-ray laser, was published in Nature earlier this month.

    Found: A precise method for determining how waves and particles affect fusion reactions

    Like surfers catching ocean waves, particles within plasma can ride waves oscillating through the plasma during fusion energy experiments. Now a team of physicists led by PPPL has devised a faster method to determine how much this interaction contributes to efficiency loss in tokamaks.

    Discovery adapts natural membrane to make hydrogen fuel from water

    In a recent study from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen.


    • Filters

    • × Clear Filters

    Argonne scientist elected as SAE Fellow

    Scientist Michael Wang from the U.S. Department of Energy's (DOE) Argonne National Laboratory was recently inducted as a Fellow of the professional engineering organization SAE (Society of Automotive Engineers). The organization reserves this prestigious grade of membership for thosewho have made significant contributions to mobility technology and have demonstrated leadership in their field.

    Top 10 Discoveries of 2018

    Every year, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory compiles a list of the biggest advances made by the Lab's staff scientists, engineers, and visiting researchers. From uncovering mysteries of the universe to building better batteries, here, in no particular order, are our picks for the top 10 discoveries of 2018.

    U.S. Department of Energy Announces $33 Million for Small Business Research and Development Grants

    The U.S. Department of Energy announced it will award 189 grants totaling $33 million to 149 small businesses in 32 states.

    DOE to Provide $16 Million for New Research into Atmospheric and Terrestrial Processes

    The U.S. Department of Energy (DOE) announced a plan to provide $16 million for new observational research aimed at improving the accuracy of today's climate and earth system models.

    Machine learning award powers Argonne leadership in engine design

    When attempting to design engines to be more fuel-efficient and emissions-free, automotive manufacturers have to take into account all the complexity inherent in the combustion process.

    ORNL partners with industry to address multiple nuclear technology challenges

    The Department of Energy's Oak Ridge National Laboratory is collaborating with industry on six new projects focused on advancing commercial nuclear energy technologies that offer potential improvements to current nuclear reactors and move new reactor designs closer to deployment.

    Lithium earns honors for three physicists working to bring the energy that powers the sun to Earth

    Feature describes research of three PPPL physicists who have won the laboratory's 2018 outstanding research awards

    DOE approves technical plan and cost estimate to upgrade Argonne facility; Project will create X-rays that illuminate the atomic scale, in 3D

    The U.S. Department of Energy has approved the technical scope, cost estimate and plan of work for an upgrade of the Advanced Photon Source, a major storage-ring X-ray source at Argonne.

    Costas Soukoulis elected to National Academy of Inventors

    Costas Soukoulis, Ames Laboratory senior scientist and Iowa State University Frances M. Craig Endowed Chair and Distinguished Professor, has been named as a 2018 National Academy of Inventors (NAI) Fellow.

    Biophysicist F. William Studier Elected Fellow of the National Academy of Inventors

    F. William Studier, a Senior Biophysicist Emeritus at the U.S. Department of Energy's Brookhaven National Laboratory and Adjunct Professor of Biochemistry at Stony Brook University, has been elected as a Fellow of the National Academy of Inventors (NAI). He is among 148 renowned academic inventors being recognized by NAI for 2018.


    • Filters

    • × Clear Filters

    Observing Clouds in Four Dimensions

    Six cameras are revolutionizing observations of shallow cumulus clouds.

    A Challenging Future for Tropical Forests

    Mortality rates of moist tropical forests are on the rise due to environmental drivers and related mechanisms.

    Rapid Lake Draining on Ice Sheets Changes How Water Moves in Unexpected Ways

    Widespread fracturing during lake drainage triggers vertical shafts to form that affect the Greenland Ice Sheet.

    New Historical Emissions Trends Estimated with the Community Emissions Data System

    The data system will allow for more detailed, consistent, and up-to-date global emissions trends that will aid in understanding aerosol effects.

    Peering into the Mist: How Water Vapor Changes Metal at the Atomic Level

    New insights into molecular-level processes could help prevent corrosion and improve catalytic conversion.

    Microbial Types May Prove Key to Gas Releases from Thawing Permafrost

    Scientists discover key types of microbes that degrade organic matter and release carbon dioxide and methane into the atmosphere.

    New Method Knocks Out Yeast Genes with Single-Point Precision

    Researchers can precisely study how different genes affect key properties in a yeast used industrially to produce fuel and chemicals.

    How Plants Regulate Sugar Deposition in Cell Walls

    Identified genes involved in plant cell wall polysaccharide production and restructuring could aid in engineering bioenergy crops.

    Scientists Identify Gene Cluster in Budding Yeasts with Major Implications for Renewable Energy

    How yeast partition carbon into a metabolite may offer insights into boosting production for biofuels.

    More Designer Peptides, More Possibilities

    A combined experimental and modeling approach contributes to understanding small proteins with potential use in industrial, therapeutic applications.


    Spotlight

    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory





    Showing results

    0-4 Of 2215