DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-02-19 07:30:00
    • Article ID: 629709

    Searching for Signs of a Force from the 'Dark Side' in Particle Collisions at RHIC

    Data from the Relativistic Heavy Ion Collider (RHIC) and other experiments nearly rule out role of 'dark photons' as an explanation for the 'g-2' anomaly

    • Credit: Brookhaven National Laboratory

      Dark photon hunters at RHIC's PHENIX detector: Stony Brook University postdocs Deepali Sharma and Yorito Yamaguchi with Brookhaven physicist/PHENIX co-spokesperson David Morrison and PHENIX collaborator Yasuyuki Akiba, vice chief scientist at the RIKEN Nishina Center in Japan and experimental group leader of the RIKEN BNL Research Center at Brookhaven Lab.

    • Credit: Brookhaven National Laboratory

      The "g-2" experiment at Brookhaven Lab discovered an anomaly in the way subatomic particles called muons wobble in a magnetic field. Scientists have been searching for explanations for this anomaly, including a possible role for dark photons. The g-2 muon storage ring later traveled from Brookhaven to Fermilab, where a followup experiment will refine the g-2 measurements.

    • Credit: Brookhaven National Laboratory

      Ten years after it ceased taking data at Brookhaven, the muon g-2 storage ring embarked on a cross-country journey from the woods of Long Island to the plains near Chicago.

    Searching for Signs of a Force from the 'Dark Side' in Particle Collisions at RHIC

    Data from the Relativistic Heavy Ion Collider (RHIC) and other experiments nearly rule out role of 'dark photons' as an explanation for the 'g-2' anomaly

    February 19, 2015

    Scientists searching for signs of elusive “dark photons” as an explanation for an anomaly in a groundbreaking physics experiment have nearly ruled out their role. Though the postulated particles could still exist as carriers of a force affecting dark matter, it is increasingly unlikely these particles from the “dark sector” can explain the discrepancy scientists have seen between a precision measurement of the behavior of muons (cousins of more familiar electrons) and calculations based on the reigning theory of particle interactions.

    “We were hunting for a ‘bump’ in a very narrow range of data that could indicate dark photons interacting with muons—but we do not see a signal of this dark photon,” said Yasuyuki Akiba, one of the physicists involved in the search.

    The results, accepted for publication as a rapid communication in Physical Review C, leave open the possibility that something even more unusual might explain the anomalous experimental results, the only known deviation from a prediction of the long-standing, thoroughly tested Standard Model. Alternatively, they could indicate a problem with the muon experiment—an idea that scientists will soon get a chance to test—or that dark photons have properties not detectable by the current experiment.

    “Either way we have learned something interesting,” said physicist Berndt Mueller, Associate Laboratory Director for Nuclear and Particle Physics at the U.S. Department of Energy’s Brookhaven National Laboratory, home to both the measurements of muon behavior and the new search for dark photons. “In physics, ruling out possible explanations is an essential part of discovery. In this case, we had a serendipitous opportunity to test a possible explanation for one experimental observation with data from a quite different quest.”

    A tale of two experiments

    The former experiment, known as the muon g-2 experiment, made precision measurements of how the spins of these subatomic particles “wobble” like tiny tops as they circulate within a powerful magnetic field. The results (announced in 2001, 2002, and 2004) deviated significantly from theoretical predictions, indicating there might be some kind of particle beyond those described by the existing Standard Model that were exerting some force on the muons. The second experiment, the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC), a particle collider operating as a DOE Office of Science user facility at Brookhaven Lab since 2000, picks up signals of particles as they emerge from energetic particle collisions aimed at exploring the fundamental building blocks of matter. As the search for explanations of the g-2 results heated up, physicists at PHENIX realized they had an untapped dataset that might offer insight into one possible source, dark photons.

    One person who’s been working on this search is PHENIX collaborator Yorito Yamaguchi, who started the analysis as a postdoctoral fellow at the Center for Nuclear Study at the University of Tokyo, and continued in his current position as a postdoc working with longtime PHENIX collaborator Abhay Deshpande in the RHIC Spin Physics Group at Stony Brook University (SBU).

    “We know that dark matter is filling our universe,” Yamaguchi said, referring to the mysterious invisible substance that together with dark energy comprises some 95 percent of the cosmos. According to physicists, there must be force carrier particles that mediate the interactions of dark matter particles, analogous to the photons and other force carriers that mediate interactions among the particles of the Standard Model. The lightest of these “dark side” force carrier particles is called the dark photon.

    “If dark photons exist, they can mix in with ordinary photons, essentially switching back and forth with ordinary photons, and make a contribution to other particles’ interactions,” Yamaguchi explained—including the degree of wobble of the subatomic muon in a magnetic field.

    PHENIX collaborator Yasuyuki Akiba, vice chief scientist at the RIKEN Nishina Center in Japan and experimental group leader of the RIKEN BNL Research Center at Brookhaven, likens the unseen effect to the way the outermost planets in our solar system affect the movement of the other planets through the force of gravity.

    “Uranus and Neptune were discovered because of these interactions,” Akiba said. “Astronomers noticed small deviations in the known planets’ motions from expectations based on calculation, and then calculated there must be another planet causing these effects. The calculations told them where to look.”

    Detecting the “unseeable”

    To figure out where to look for dark photons that might explain the g-2 anomaly, the PHENIX scientists turned to theorists’ calculations on the effects such unseen particles might have on the value of g-2, one of the factors in the equation describing the magnetic wobble of the muon.

    “The dark photon can add to the muon g-2 prediction, but the amount depends on its mass and how it mixes with ordinary photons,” Akiba said. There is a range of possible dark photon masses and mixing parameters the physicists can explore to see if there are signs of such interactions, and experiments around the world have been searching—so far with negative results that have gradually ruled out the places such dark photons could be hiding. “So we are like astronomers looking in the remaining region that could possibly explain the muon g-2 experiment results,” Akiba said.

    What the PHENIX physicists were actually looking for was a bump in the production of pairs of electrons and their positively charged counterparts, known as positrons. Such electron-positron pairs are produced very occasionally from photons emerging from pion decays in RHIC collisions. “It’s a small effect, but easy to see,” said Brookhaven theoretical physicist William Marciano. Those regular, or background, pairs are produced with a well-known, smooth distribution, he said.

    But if one of the photons mixes with a dark photon, which then decays to an electron-positron pair, the distribution is not smooth. Instead it occurs at the specific mass of the dark photon—the peak the scientists were searching for—rather than a continuum of values.

    “If PHENIX sees a million pion decays they might have a handful of dark photons,” Marciano said. “They have a very good spectrometer to measure the electron-positron pair and reconstruct the mass very precisely.”

    Yamaguchi and Akiba started by looking at the electron-positron pair data they already had in hand—from 2006 proton-proton and 2008 deuteron-gold collisions at RHIC—which Yamaguchi had previously analyzed as part of his Ph.D. thesis. “But we knew that there was yet another electron pair dataset from the 2009 proton-proton run at RHIC,” Akiba said. “So we talked to Deepali Sharma, another postdoc who was working on her own electron pair analysis for that dataset as part of Stony Brook’s Heavy Ion Physics Group.”

    Putting all the data together, they did not see a bump.

    “At a confidence level of 85 percent, the combined analysis suggests that dark photons cannot explain the g-2 anomaly. Furthermore, most of the range where such dark photons could exist is ruled out with 90 percent confidence,” Yamaguchi said. “Still physicists like to have a confidence level of 97 percent or greater for a result to begin to look definitive. We’re not quite there yet.”

    The final word?

    Coincidentally, another experiment searching for evidence of dark photons that could explain g-2, the BaBar experiment at DOE’s SLAC National Accelerator Laboratory, recently published a very similar result. “They covered a very wide region, including the one we studied, and they don’t have any signal that explains g-2 either,” Yamaguchi said, adding that the two independent experiments make the result ruling out dark photons even more concrete. With 100 times more pion decay data already in hand from the 2014 RHIC run, the PHENIX team hopes to further increase the certainty of their result.

    If they rule out the entire range of values that could explain g-2, “either you say that’s the end of the dark photon for g-2, or you have to give the dark photon some properties that experiments like PHENIX would not be able to detect,” Marciano said. For instance, “maybe the dark photon doesn’t primarily decay into an electron-positron pair…”

    What about other explanations for g-2? Physicists have long-suggested the existence of so-called supersymmetric partners of the existing Standard Model particles that might trigger as-yet-undescribed particle interactions. Experiments at the Large Hadron Collider have been searching for signs of these predicted supersymmetric particles, but so far no such signals have turned up. “They’ve eliminated large chunks of parameter space, but they can’t say the idea of supersymmetry has been eliminated completely,” Marciano said.

    Could there have been a problem with the muon g-2 experiment? Physicists will soon get a chance to repeat the measurements thanks to a monumental undertaking to transport the muon g-2 storage ring from Brookhaven to DOE’s Fermi National Accelerator Laboratory in 2013. At Fermilab, scientists are reconstructing the experiment to make use of a much more intense and pure beam of muons than was available at Brookhaven. With a four-fold increase in the measurement’s precision, the new experiment, set to start in 2016, will be more sensitive to virtual or hidden particles and forces than any previous experiment of its kind. The results will reveal whether the anomaly still stands, and, if so, set off a new quest for explanations.

    And what about the existence of dark photons? Theoretical physicists say there are still good reasons these mysterious particles should exist—to explain a variety of unrelated astrophysical observations.

    “Dark photons that could explain some of these phenomena, such as a possible excess of positrons coming from outer space, don’t need the same properties as you need to explain the g-2 anomaly,” Marciano said. But there are other possible explanations for these phenomena as well, he said, so the search for signs of darkness in the astrophysical arena may not be as clear-cut as it was for g-2.

    What is clear is that the quest for understanding the subatomic particle soup that makes up the cosmos is far from over. But the process of science—which includes the interplay of theory and experiments that put predictions to the test, repetition, increasing precision, and being alert to unforeseen connections—will continue to bring the subatomic world into ever-sharper focus.

    The muon g-2 experiment at Brookhaven was funded by the DOE Office of Science, the U.S. National Science Foundation, the German Bundesminister fur Bildung und Forschung, and the Russian Ministry of Science, and through the U.S.-Japan Agreement in High Energy Physics. Research at RHIC is funded primarily by the DOE Office of Science and also by these agencies and organizations.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    Researchers at Argonne National Laboratory have designed and tested a new electrolyte composition that could greatly accelerate the adoption of the next generation of lithium-ion batteries.

    Light My Fire: How to Startup Fusion Devices Every Time

    Light My Fire: How to Startup Fusion Devices Every Time

    Researchers have constructed a framework for starting and raising a fusion plasma to temperatures rivaling the sun in hundreds of milliseconds.

    Atomic-level Imaging Could Offer Roadmap to Metals with New Properties

    Atomic-level Imaging Could Offer Roadmap to Metals with New Properties

    A team of researchers at the Georgia Institute of Technology has developed a new process that could help gain new insights into individual high-entropy alloys and help characterize their properties.


    • Filters

    • × Clear Filters
    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak, director of Lawrence Berkeley National Laboratory's Nuclear Science Division since 2015, has been named a 2019 Distinguished Scientist Fellow by the U.S. Department of Energy's Office of Science.

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have garnered two out of five "Distinguished Scientists Fellow" awards announced today by the DOE's Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and Jose Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.

    Department of Energy Announces $6.6 Million to Study Dark Matter

    The U.S. Department of Energy (DOE) announced $6.6 million for four new research awards to develop design concepts for dark matter search experiments.


    • Filters

    • × Clear Filters
    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.

    Where Does Salt in the Amazon Air Come From?

    Where Does Salt in the Amazon Air Come From?

    Tiny particles of sodium salt float in the air over the pristine Amazon basin. Why? The only explanation before now has been that winds blow marine particles hundreds of miles inland from the Atlantic Ocean. An international team of scientists used chemical imaging and atmospheric models to prove otherwise.


    Spotlight

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)





    Showing results

    0-4 Of 2215