DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-08-13 11:05:00
    • Article ID: 638601

    The Pressure Is on

    • Credit: Image credit: Jason Richards/ORNL.

      his large volume neutron diamond anvil cell seen here is loaded with water (i.e. ice). The sample sits between the two diamonds. The top diamond is covered with a metal disk, the gasket, that contains the sample. The flat on the top of the diamond seen here has a diameter of 1.5 mm. The metal housing is used to bring the diamonds together in a controlled manner to pressurize.

    • Credit: Image credit: Genevieve Martin/ORNL.

      Seen here are Bianca Haberl and Reinhard Boehler working with a diamond anvil cell at the SNAP instrument, SNS beam line 3.

    Question: What do you get when you take two surfaces roughly the size of a celery seed and crush them together with a load of 15 tons?

    Answer: You get pressures approaching those inside planets, allowing you to distort nearly any material beyond recognition.

    Researchers with Oak Ridge National Laboratory’s (ORNL’s) Spallation Neutron Source (SNS) have developed technology to squeeze materials with a million times the pressure of the earth’s atmosphere while studying them with neutrons. When they bombard these materials with neutrons, the materials provide an unprecedented picture of the changing nature of matter under extreme pressure.

    The technology is known as a diamond anvil cell. It uses diamonds whose tips have been polished off to create flat surfaces, then presses a sample between those surfaces with immense force to create an extreme experimental environment. Diamond anvil cells have been used in other types of experiments—for X-ray scattering at synchrotrons and for optical spectroscopy techniques, for instance—but bringing them into the realm of neutron science creates a unique opportunity, and an immense challenge.

    The opportunity is that neutron scattering can examine light elements such as hydrogen and silicon in a way that no other method can. At the SNS SNAP instrument (SNAP stands for Spallation Neutrons and Pressure Diffractometer), scientists have been exploring a variety of scientific questions. For instance, research into the complex behavior of ice under extreme pressure may give us an idea of what’s going on inside our solar system’s gas giants, while explorations into the effect of hydrogen on materials deposited in a thin film may clear away impediments to more advanced electronics manufacturing.

    Larger samples

    “The exciting thing about pressure is you can put in so much more energy than you can with temperature,” said Bianca Haberl, a Weinberg Fellow at SNS, which is a DOE Office of Science User Facility. “That means you can change the atomic bonding so much more. There is no other way to change materials as drastically as you can with pressure.”

    The challenge of this approach, however, is that neutron scattering requires far larger samples than techniques such as X-ray scattering. While that celery seed may look tiny on the tip of your finger, it is enormous in the world of advanced scattering techniques.

    “If you do optical benchtop or X-ray experiments, it’s in the order of a few tenths of a millimeter,” said Reinhard Boehler, who divides his time between ORNL and the Carnegie Institution of Washington in Washington, D.C. “With neutrons, we need sample sizes that are a few hundred times larger, because neutron fluxes are typically very low.”

    This is such an enormous challenge because larger surface areas require much more force to reach the same pressure. In fact, neutron scattering with diamond anvil cells would be impossible without two major technological advances: SNS itself, which delivers the most intense pulsed neutron beams in the world, and recent breakthroughs in the creation of large synthetic diamonds.

    The project needed much larger diamonds—in the neighborhood of 10 carats—because smaller diamonds and their supports break under that kind of force. In addition, researchers needed single-crystal diamonds, because composites that are fused together from smaller diamonds interfere with neutrons.

    As you might imagine, such large diamonds are expensive; you’d be hard pressed to find a 10-carat natural diamond for under $200,000. Add to that the fact that diamonds are definitely not forever when they’re pressed with 15 tons, and it becomes clear that the cost of natural diamonds makes them prohibitive.

    Boehler said the diamond breakthrough was a technique called chemical vapor deposition, which was optimized for diamond growth by his lab at Carnegie and licensed to private companies for manufacture. The researchers can get 10-carat diamonds created with this technique for about $7,000.

    Squeezing ice

    Research with the new technology so far has included the study of water—Boehler’s specialty—and the effect of hydrogen on thin films—Haberl’s. Both exploit the unique strength of neutron science by focusing on hydrogen—nature’s lightest element, with only one proton.

    Boehler, whose background is in geophysics, has been squeezing ice and hydrogen, in part to replicate the interiors of planets such as Neptune and Uranus. So far he has focused on hydrogen and water molecules—two hydrogen atoms and one oxygen—but he also has his eye on methane (four hydrogens and one carbon) and ammonia (three hydrogens and one nitrogen).

    His experiments at SNS so far have focused on ice containing deuterium, a hydrogen isotope whose nuclei contain a neutron as well as a proton. As commonplace as water is, he explained, it is far from humdrum when exposed to high pressure, where even its freezing point becomes controversial.

    “Even the melting of water at high pressure is very controversial,” he said. “If you give that problem to five groups, they will give you five different answers, and the differences are not small.”

    Using ice with deuterium, Boehler and colleagues, Chris Tulk, Antonio Moreira dos Santos and Jamie Molaison from SNS, and Malcolm Guthrie formerly of the Carnegie Institution, have been able to put samples under a million atmospheres of pressure. While they are still in the process of analyzing results, theorists have suggested that water under high pressures behaves like a crystal such as rock salt, or like a metal.

    “Theoretically, it’s very difficult to handle, because of very different interatomic forces for oxygen or hydrogen or deuterium,” he said.

    That pesky hydrogen

    Haberl, whose background is in materials science, has been using diamond anvils at SNS to study the effects of hydrogen contamination on deposited thin films, such as the silicon used in electronics.

    By thin, we mean films a thousand times thinner than a human hair.

    “Most semiconductors nowadays are deposited,” she said, “because it’s thin. I’m talking about 10 nanometers to 100 nanometers, and the thinner you can make it and have it still work, the less material you need.”

    The problem with these deposited films is that they invariably end up containing hydrogen. Standard, hydrogen-free silicon that has been exposed to high pressure shows exciting behaviors and new structures, even after the pressure is removed. These behaviors may lead to valuable new technologies. The cheaper deposited silicon—with hydrogen—does not show the same behavior, and the same useful new structures cannot be synthesized.

    “Every time you deposit something, you have to make a vacuum, which is never perfect,” she explained. “In addition, you often start off with materials that contain hydrogen, so in the end your deposited film may contain up to 10 percent hydrogen.”

    By putting the deposited films under high pressure, Haberl said, she and her colleagues hope to make these thin films more useful. To understand why these deposited films with hydrogen do not result in these useful new structures, they need neutron scattering, simply because the hydrogen is invisible to X-rays.

    Haberl noted that they are also interested in materials other than silicon—for example extremely hard carbon films, germanium films that could replace silicon in semiconductors, or other so-called compound semiconductors

    Looking forward, high-pressure research at SNS will expand both to new scientific areas and to other instruments in the facility, predominantly the VISION instrument. Research proposals coming into the facility include studies of pure carbon, hydrogen sulfide (a very promising superconductor), and even heavy elements such as actinides (a group that includes uranium and plutonium).

    Boehler said the new technology, coupled with the ability of SNS to exploit neutrons in a variety of ways, will open up exciting new areas of knowledge.

    “Now, with the new anvil technology, we have a big window of new opportunities.”

    The diamond anvil cell development for neutron studies was made possible by the unique purpose-built design of SNAP and collaboration between the SNAP team and researchers from Carnegie Institution. Support for Boehler’s research came in part from the Energy Frontier Research in Extreme Environments Center, based at Carnegie. The center is funded by the DOE Office of Science. Support for the development of further diamond anvil cell technology at SNS also comes from an ORNL Laboratory Directed Research and Development grant.

    + View additional photos

    X
    X
    X
    • Filters

    • × Clear Filters
    Promising new research identifies innovative approach for controlling defects in 3D printing

    Promising new research identifies innovative approach for controlling defects in 3D printing

    Argonne scientists use temperature data to tune -- and fix -- defects in 3D-printed metallic parts.

    Turning carbon dioxide into liquid fuel

    Turning carbon dioxide into liquid fuel

    University reports a new electrocatalyst that converts carbon dioxide and water into ethanol with very high energy efficiency, high selectivity for the desired final product and low cost.

    Interpreting the Human Genome's Instruction Manual

    Interpreting the Human Genome's Instruction Manual

    Berkeley Lab bioscientists are part of a nationwide research project, called ENCODE, that has generated a detailed atlas of the molecular elements that regulate our genes. This enormous resource will help all human biology research moving forward.

    Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

    Ultrafast lasers probe elusive chemistry at the liquid-liquid interface

    Real-time measurements captured by researchers at the Department of Energy's Oak Ridge National Laboratory provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Scientists on the Dark Energy Survey have used observations of the smallest known galaxies to better understand dark matter, the mysterious substance that makes up 85% of the matter in the universe. The smallest galaxies can contain hundreds to thousands of times more dark matter than normal visible matter, making them ideal laboratories for studying this mysterious substance. By performing a rigorous census of small galaxies surrounding our Milky Way, scientists on the Dark Energy Survey have been able to constrain the fundamental particle physics that governs dark matter.

    Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    ORNL Story Tips: Pandemic impact, root studies, neutrons confirm, lab on a crystal and modeling fusion

    Scientists propose a novel method for controlling fusion reactions

    Scientists propose a novel method for controlling fusion reactions

    Researchers at the DOE's Princeton Plasma Physics Laboratory have developed a pulsed method for stabilizing magnetic islands that can cause disruptions in fusion plasmas.

    Cementing the future

    Cementing the future

    Researchers from Argonne National Laboratory's Advanced Photon Source and Center for Nanoscale Materials are utilizing nano- and micro-scale imaging to better understand the chemical processes behind the formation of cement.

    Fat-Based Molecules are Key to Zika Virus Infection

    Fat-Based Molecules are Key to Zika Virus Infection

    Researchers from PNNL have helped colleagues at OHSU identify lipid molecules required for Zika infection in human cells. The specific lipids involved could also be a clue to why the virus primarily infects brain tissue.

    Another Win for the Standard Model: New Study Defies Decades-Old 'Discrepancy' With High-Precision Measurement

    Another Win for the Standard Model: New Study Defies Decades-Old 'Discrepancy' With High-Precision Measurement

    A new study dives into a decades-old discrepancy from a Standard Model of particle physics pillar known as "lepton flavor universality," and provides strong evidence to resolve it.


    • Filters

    • × Clear Filters
    Fermilab scientist Laura Fields receives $2.5 million DOE award to study beams of shape-shifting ghost particles

    Fermilab scientist Laura Fields receives $2.5 million DOE award to study beams of shape-shifting ghost particles

    Laura Fields has won an Early Career Research Award from the Department of Energy to help physicists better understand the composition of neutrino beams used by Fermilab experiments. Her work will help gather and validate results that could shed light on why the universe consists of something rather than nothing.

    Summer Sundays Go Virtual

    Summer Sundays Go Virtual

    rookhaven Lab is moving its Summer Sunday program to an online format for 2020. Over three Sundays this summer, the Lab will host a series of live, virtual events for everyone to interact with the Lab in a new way. Each event will feature a guided tour of a Brookhaven Lab facility followed by a live Q&A with a panel comprised of the facility's scientists.

    Geothermal Brines Could Propel California's Green Economy

    Geothermal Brines Could Propel California's Green Economy

    Deep beneath the surface of the Salton Sea, a shallow lake in California's Imperial County, sits an immense reserve of critical metals that, if unlocked, could power the state's green economy for years to come. These naturally occurring metals are dissolved in geothermal brine, a byproduct of geothermal energy production. Now the race is on to develop technology to efficiently extract one of the most valuable metals from the brine produced by the geothermal plants near the Salton Sea: lithium.

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    The Department of Energy's Oak Ridge National Laboratory has licensed two additive manufacturing-related technologies that aim to streamline and ramp up production processes to Knoxville-based Magnum Venus Products, Inc., a global manufacturer of fluid movement and product solutions for industrial applications in composites and adhesives.

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    The Department of Energy has awarded $60 million to a new solar fuels initiative - called the Liquid Sunlight Alliance (LiSA) - led by Caltech in close partnership with Berkeley Lab. LiSA will build on the foundational work of the Joint Center for Artificial Photosynthesis (JCAP).

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Profile of PPPL winner of APS Dawson Award for outstanding achievement in plasma physics research.

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Bob May's career-long aspiration has been to keep people from all walks of life and in different work environments safe from radiation in the workplace. Now, the deputy director of Environment, Safety and Health at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has been honored for his dedication to the field by being named a fellow of the Health Physics Society.

    Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

    Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

    Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists' methods for correcting them or avoiding them to begin with.

    PNNL's Vapor Detection Technology Named GeekWire's 'Innovation of the Year'

    PNNL's Vapor Detection Technology Named GeekWire's 'Innovation of the Year'

    A PNNL-developed technology that can quickly detect explosive vapors, deadly chemicals and illicit drugs with unparalleled accuracy has been named the 2020 Innovation of the Year by GeekWire, the Seattle-based technology news company.

    Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

    Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

    An early career physicist with a strong background in plasma physics has been named to a new postdoctoral fellowship named for Robert Ellis Jr., a pioneering physicist at PPPL, that is aimed at diversifying the plasma physics field.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215