DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-08-13 11:05:00
    • Article ID: 638601

    The Pressure Is on

    • Credit: Image credit: Jason Richards/ORNL.

      his large volume neutron diamond anvil cell seen here is loaded with water (i.e. ice). The sample sits between the two diamonds. The top diamond is covered with a metal disk, the gasket, that contains the sample. The flat on the top of the diamond seen here has a diameter of 1.5 mm. The metal housing is used to bring the diamonds together in a controlled manner to pressurize.

    • Credit: Image credit: Genevieve Martin/ORNL.

      Seen here are Bianca Haberl and Reinhard Boehler working with a diamond anvil cell at the SNAP instrument, SNS beam line 3.

    Question: What do you get when you take two surfaces roughly the size of a celery seed and crush them together with a load of 15 tons?

    Answer: You get pressures approaching those inside planets, allowing you to distort nearly any material beyond recognition.

    Researchers with Oak Ridge National Laboratory’s (ORNL’s) Spallation Neutron Source (SNS) have developed technology to squeeze materials with a million times the pressure of the earth’s atmosphere while studying them with neutrons. When they bombard these materials with neutrons, the materials provide an unprecedented picture of the changing nature of matter under extreme pressure.

    The technology is known as a diamond anvil cell. It uses diamonds whose tips have been polished off to create flat surfaces, then presses a sample between those surfaces with immense force to create an extreme experimental environment. Diamond anvil cells have been used in other types of experiments—for X-ray scattering at synchrotrons and for optical spectroscopy techniques, for instance—but bringing them into the realm of neutron science creates a unique opportunity, and an immense challenge.

    The opportunity is that neutron scattering can examine light elements such as hydrogen and silicon in a way that no other method can. At the SNS SNAP instrument (SNAP stands for Spallation Neutrons and Pressure Diffractometer), scientists have been exploring a variety of scientific questions. For instance, research into the complex behavior of ice under extreme pressure may give us an idea of what’s going on inside our solar system’s gas giants, while explorations into the effect of hydrogen on materials deposited in a thin film may clear away impediments to more advanced electronics manufacturing.

    Larger samples

    “The exciting thing about pressure is you can put in so much more energy than you can with temperature,” said Bianca Haberl, a Weinberg Fellow at SNS, which is a DOE Office of Science User Facility. “That means you can change the atomic bonding so much more. There is no other way to change materials as drastically as you can with pressure.”

    The challenge of this approach, however, is that neutron scattering requires far larger samples than techniques such as X-ray scattering. While that celery seed may look tiny on the tip of your finger, it is enormous in the world of advanced scattering techniques.

    “If you do optical benchtop or X-ray experiments, it’s in the order of a few tenths of a millimeter,” said Reinhard Boehler, who divides his time between ORNL and the Carnegie Institution of Washington in Washington, D.C. “With neutrons, we need sample sizes that are a few hundred times larger, because neutron fluxes are typically very low.”

    This is such an enormous challenge because larger surface areas require much more force to reach the same pressure. In fact, neutron scattering with diamond anvil cells would be impossible without two major technological advances: SNS itself, which delivers the most intense pulsed neutron beams in the world, and recent breakthroughs in the creation of large synthetic diamonds.

    The project needed much larger diamonds—in the neighborhood of 10 carats—because smaller diamonds and their supports break under that kind of force. In addition, researchers needed single-crystal diamonds, because composites that are fused together from smaller diamonds interfere with neutrons.

    As you might imagine, such large diamonds are expensive; you’d be hard pressed to find a 10-carat natural diamond for under $200,000. Add to that the fact that diamonds are definitely not forever when they’re pressed with 15 tons, and it becomes clear that the cost of natural diamonds makes them prohibitive.

    Boehler said the diamond breakthrough was a technique called chemical vapor deposition, which was optimized for diamond growth by his lab at Carnegie and licensed to private companies for manufacture. The researchers can get 10-carat diamonds created with this technique for about $7,000.

    Squeezing ice

    Research with the new technology so far has included the study of water—Boehler’s specialty—and the effect of hydrogen on thin films—Haberl’s. Both exploit the unique strength of neutron science by focusing on hydrogen—nature’s lightest element, with only one proton.

    Boehler, whose background is in geophysics, has been squeezing ice and hydrogen, in part to replicate the interiors of planets such as Neptune and Uranus. So far he has focused on hydrogen and water molecules—two hydrogen atoms and one oxygen—but he also has his eye on methane (four hydrogens and one carbon) and ammonia (three hydrogens and one nitrogen).

    His experiments at SNS so far have focused on ice containing deuterium, a hydrogen isotope whose nuclei contain a neutron as well as a proton. As commonplace as water is, he explained, it is far from humdrum when exposed to high pressure, where even its freezing point becomes controversial.

    “Even the melting of water at high pressure is very controversial,” he said. “If you give that problem to five groups, they will give you five different answers, and the differences are not small.”

    Using ice with deuterium, Boehler and colleagues, Chris Tulk, Antonio Moreira dos Santos and Jamie Molaison from SNS, and Malcolm Guthrie formerly of the Carnegie Institution, have been able to put samples under a million atmospheres of pressure. While they are still in the process of analyzing results, theorists have suggested that water under high pressures behaves like a crystal such as rock salt, or like a metal.

    “Theoretically, it’s very difficult to handle, because of very different interatomic forces for oxygen or hydrogen or deuterium,” he said.

    That pesky hydrogen

    Haberl, whose background is in materials science, has been using diamond anvils at SNS to study the effects of hydrogen contamination on deposited thin films, such as the silicon used in electronics.

    By thin, we mean films a thousand times thinner than a human hair.

    “Most semiconductors nowadays are deposited,” she said, “because it’s thin. I’m talking about 10 nanometers to 100 nanometers, and the thinner you can make it and have it still work, the less material you need.”

    The problem with these deposited films is that they invariably end up containing hydrogen. Standard, hydrogen-free silicon that has been exposed to high pressure shows exciting behaviors and new structures, even after the pressure is removed. These behaviors may lead to valuable new technologies. The cheaper deposited silicon—with hydrogen—does not show the same behavior, and the same useful new structures cannot be synthesized.

    “Every time you deposit something, you have to make a vacuum, which is never perfect,” she explained. “In addition, you often start off with materials that contain hydrogen, so in the end your deposited film may contain up to 10 percent hydrogen.”

    By putting the deposited films under high pressure, Haberl said, she and her colleagues hope to make these thin films more useful. To understand why these deposited films with hydrogen do not result in these useful new structures, they need neutron scattering, simply because the hydrogen is invisible to X-rays.

    Haberl noted that they are also interested in materials other than silicon—for example extremely hard carbon films, germanium films that could replace silicon in semiconductors, or other so-called compound semiconductors

    Looking forward, high-pressure research at SNS will expand both to new scientific areas and to other instruments in the facility, predominantly the VISION instrument. Research proposals coming into the facility include studies of pure carbon, hydrogen sulfide (a very promising superconductor), and even heavy elements such as actinides (a group that includes uranium and plutonium).

    Boehler said the new technology, coupled with the ability of SNS to exploit neutrons in a variety of ways, will open up exciting new areas of knowledge.

    “Now, with the new anvil technology, we have a big window of new opportunities.”

    The diamond anvil cell development for neutron studies was made possible by the unique purpose-built design of SNAP and collaboration between the SNAP team and researchers from Carnegie Institution. Support for Boehler’s research came in part from the Energy Frontier Research in Extreme Environments Center, based at Carnegie. The center is funded by the DOE Office of Science. Support for the development of further diamond anvil cell technology at SNS also comes from an ORNL Laboratory Directed Research and Development grant.

    + View additional photos

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    For Superconductors, Discovery Comes From Disorder

    For Superconductors, Discovery Comes From Disorder

    In a new study, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have explained the ways in which two electronic arrangements compete with each other and ultimately affect the temperature at which a material becomes superconducting.

    Cool Roofs Can Help Shield California's Cities Against Heat Waves

    Cool Roofs Can Help Shield California's Cities Against Heat Waves

    A new study by researchers at Lawrence Berkeley National Laboratory shows that if every building in California sported "cool" roofs by 2050, these roofs would help contribute to protecting urbanites from the consequences of dangerous heatwaves.

    Scientists discover potential path to improving samarium-cobalt magnets

    Scientists discover potential path to improving samarium-cobalt magnets

    Scientists have discovered a potential tool to enhance magnetization and magnetic anisotropy, making it possible to improve the performance of samarium-cobalt magnets.

    Atomic 'Trojan Horse' Could Inspire New Generation of X-Ray Lasers and Particle Colliders

    Atomic 'Trojan Horse' Could Inspire New Generation of X-Ray Lasers and Particle Colliders

    An international team of researchers, including scientists from the Department of Energy's SLAC National Accelerator Laboratory, has demonstrated a potentially much brighter electron source based on plasma that could be used in more compact, more powerful particle accelerators.

    Improving the Magnetic Bottle That Controls Fusion Power on Earth

    Improving the Magnetic Bottle That Controls Fusion Power on Earth

    The exhaustive detection method that discovered the error field in the initial run of the NSTX-U tokamak could serve as a model for error-field detection in future tokamaks.

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    The Princeton Plasma Physics Laboratory, in partnership with the New Jersey Department of Labor, has embarked on a new apprenticeship program to teach high-tech skills to young people through four years of on-the-job training and technical courses.

    Is your Supercomputer Stumped? There May Be a Quantum Solution

    Is your Supercomputer Stumped? There May Be a Quantum Solution

    A new study led by a physicist at Berkeley Lab details how a quantum computing technique called "quantum annealing" can be used to solve problems relevant to fundamental questions in nuclear physics about the subatomic building blocks of all matter. It could also help answer other vexing questions in science and industry, too.

    Story tips from the Department of Energy's Oak Ridge National Laboratory, August 2019

    Story tips from the Department of Energy's Oak Ridge National Laboratory, August 2019

    ORNL story tips: Training next-generation sensors to "see," interpret live data; 3D printing tungsten could protect fusion reactor components; detailed study estimated how much more, or less, energy U.S. residents might consume by 2050 based on seasonal weather shifts; astrophysicists used ORNL supercomputer to create highest-ever-resolution galactic wind simulations; new solar-thermal desalination method improves energy efficiency.

    Scientists Cook Up New Recipes for Taking Salt Out of Seawater

    Scientists Cook Up New Recipes for Taking Salt Out of Seawater

    Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) investigating how to make desalination less expensive have recently hit on promising design rules for making so-called "thermally responsive" ionic liquids to separate water from salt.

    Krypton reveals ancient water beneath the Israeli desert

    Krypton reveals ancient water beneath the Israeli desert

    Getting reliable precipitation data from the past has proven difficult, as is predicting regional changes for climate models in the present. A combination of isotope techniques developed by researchers at Argonne and UChicago may help resolve both.


    • Filters

    • × Clear Filters
    Bioenergy startup licenses ORNL food-waste-to-fuel system

    Bioenergy startup licenses ORNL food-waste-to-fuel system

    Electro-Active Technologies, Inc., of Knoxville, Tenn., has exclusively licensed two biorefinery technologies invented and patented by the startup's co-founders while working at Oak Ridge National Laboratory. The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel.

    DOE to Provide $27.6 Million for Data Science Research in Chemical and Materials Sciences

    The U.S. Department of Energy (DOE) announced $27.6 million in funding over the next three years for targeted research in data science to accelerate discovery in chemistry and material sciences.

    Explore the Site of a New Telescope Survey That Will Map the Universe in 3-D

    Explore the Site of a New Telescope Survey That Will Map the Universe in 3-D

    For a special sneak preview before the official start of observations in early 2020, join scientists, engineers, and others who are working on the Dark Energy Spectroscopic Instrument (DESI) for an exclusive day of access. DESI, under installation at Kitt Peak National Observatory, will capture the light from tens of millions of distant galaxies to better understand the accelerating expansion of the universe.

    A Community-Driven Data Science System to Advance Microbiome Research

    A Community-Driven Data Science System to Advance Microbiome Research

    The National Microbiome Data Collaborative (NMDC), a new initiative aimed at empowering microbiome research, is gearing up its pilot phase after receiving $10 million from the U.S. Department of Energy Office of Science.

    Brookhaven Lab and University of Delaware Begin Joint Initiative

    Brookhaven Lab and University of Delaware Begin Joint Initiative

    The U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the University of Delaware (UD) have begun a two-year joint initiative to promote collaborative research in new areas of complementary strength and strategic importance.

    IDEMIA Identity & Security USA licenses ORNL advanced optical array

    IDEMIA Identity & Security USA licenses ORNL advanced optical array

    IDEMIA Identity & Security USA has licensed an advanced optical array developed at the Department of Energy's Oak Ridge National Laboratory. The portable technology can be used to help identify individuals in challenging outdoor conditions.

    Jefferson Lab Welcomes New Director of Accelerator Operations

    Jefferson Lab Welcomes New Director of Accelerator Operations

    After an extensive search, Camille Ginsburg has been selected as the director of accelerator operations at DOE's Jefferson Lab.

    EIC Center at Jefferson Lab Announces Fellowship Awards

    EIC Center at Jefferson Lab Announces Fellowship Awards

    One graduate student and three postdoctoral research scientists are awarded fellowships to advance the science of an electron-ion collider.

    Two PNNL Researchers Receive Presidential Early Career Award

    Two PNNL Researchers Receive Presidential Early Career Award

    Two Chief Engineers at PNNL given Presidential Early Career Award for Scientists and Engineers


    • Filters

    • × Clear Filters
    Machine Learning Helps Create Detailed, Efficient Models of Water

    Machine Learning Helps Create Detailed, Efficient Models of Water

    A team devised a way to better model water's properties. They developed a machine-learning workflow that offers accurate and computationally efficient models.

    Cultivating the Assembly Landscape

    Cultivating the Assembly Landscape

    For the first time, a team determined and predictably manipulated the energy landscape of a material assembled from proteins. Designing materials that easily and reliably morph on command could benefit water filtration, sensing applications, and adaptive devices.

    A Change in Structure for a Superheavy Magnesium Isotope

    A Change in Structure for a Superheavy Magnesium Isotope

    A recent measurement exploring the structure of magnesium-40 has shown a surprising change in the structure relative to expectations. This unanticipated change could be pointing to physics missing from our theories, such as the effects of weak binding between particles.

    Bursts of Light Shape Walls Between Waves of Charge

    Bursts of Light Shape Walls Between Waves of Charge

    To better store data, scientists need ways to change a material's properties suddenly. For example, they want a material that can go from insulator to conductor and back again. Now, they devised a surprisingly simple way of flipping a material from one state into another, and back again, with flashes of light. A single light pulse turns thin sheets of tantalum disulfide from its original (alpha) state into a mixture of alpha and beta states. Domain walls separate the two states. A second pulse of light dissolves the walls, and the material returns to its original state.

    New Geometric Model Improves Predictions of Fluid Flow in Rock

    New Geometric Model Improves Predictions of Fluid Flow in Rock

    Supercomputer validates mathematical approach for describing geological features.

    Deep Learning Reveals Mysteries of Deep Space

    Deep Learning Reveals Mysteries of Deep Space

    How do you determine the measurable "things" that describe the nature of our universe? To answer that question, researchers used CosmoFlow, a deep learning technique, running on a National Energy Research Scientific Computing Center supercomputer. They analyzed large, complex data sets from 3-D simulations of the distribution of matter to answer that question. The team showed that CosmoFlow offers a new platform to gain a deeper understanding of the universe.

    At DOE's Manufacturing Demonstration Facility, science drives next-gen creations

    At DOE's Manufacturing Demonstration Facility, science drives next-gen creations

    American ingenuity is providing radical productivity improvements from advanced materials and robotic systems developed at the Department of Energy's Manufacturing Demonstration Facility at Oak Ridge National Laboratory.

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    Engineers can model heat distribution in reactor designs with fewer or no approximations.

    Tiny Vortices Could One Day Haul Microscopic Cargo

    Tiny Vortices Could One Day Haul Microscopic Cargo

    The behavior of active magnetic liquids suggests new pathways to transport particles across surfaces and build materials that self-heal.

    How Does Mother Nature Tackle the Tough Triple Bond Found in Nitrogen?

    How Does Mother Nature Tackle the Tough Triple Bond Found in Nitrogen?

    Researchers demystify how the nitrogenase enzyme breaks bonds to learn a better way to make ammonia.


    Spotlight

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom
    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    The Future of Today's Electric Power Systems
    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Supporting the Development of Offshore Wind Power Plants
    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Stairway to Science
    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory





    Showing results

    0-4 Of 2215