Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2016-08-23 09:05:14
  • Article ID: 659572

Neutrino Experiments Utilize ORNL Experts, Equipment to Explore the Unknown

Three big studies benefit from neutrino factories and expertise at Tennessee national lab

  • Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Genevieve Martin

    From left, David Dean, Alfredo Galindo-Uribarri and Chris Bryan of Oak Ridge National Laboratory check on a prototype detector at the High Flux Isotope Reactor, a Department of Energy Office of Science User Facility that creates continuous neutron beams. The prototype will mine neutrinos formed as a byproduct of radioactive decay processes for one of three neutrino experiments with major ORNL participation.

  • Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Carlos Jones

    Nearly 60 international scientists attended a workshop organized by ORNL’s Physics Division, “Neutrinos in Nuclear Physics,” July 29–31 in Knoxville.

Approximately 100 trillion neutrinos bombard your body every second—but you don’t notice these ghostly subatomic particles. Because they are electrically neutral and interact with other matter via the weak force, their detection is difficult—and the subject of challenging experiments that convene physicists from universities, national labs and other research institutions worldwide.

The demonstration that neutrinos can change identities—made possible by two large experiments—was rewarded with the Nobel Prize last year. The discovery meant that neutrinos have mass, albeit small. It hinted at new physics beyond the Standard Model, which captures our current understanding of matter and energy but is incomplete. This year the field of neutrino physics is full of enthusiasm as three significant experiments with different goals gear up to advance our understanding of neutrino physics. All three experiments benefit from expertise and facilities at the Department of Energy’s Oak Ridge National Laboratory.

“We’re enthusiastic because these experiments will provide the means to answer basic questions about the universe,” said ORNL physicist Alfredo Galindo-Uribarri. Physicists will use novel detectors to explore unknowns of the cosmos, from the properties of neutrinos to the possibility that neutrinos are a component of dark matter, which makes up one-quarter of the universe.

One of the neutrino experiments, with ORNL nuclear physicists in leadership roles, is the MAJORANA DEMONSTRATOR. It is located inside a former gold mine in Lead, South Dakota, where the Homestake solar neutrino experiment once ran. Nearly a mile underground to block most radiation from interfering with sensitive experiments, the Homestake solar neutrino experiment detected cosmic neutrinos from 1970 to 1994. A Nobel Prize recognized this work in 2002.

Partnering institutions from all over the world later built the MAJORANA DEMONSTRATOR’s neutrino detector at the Sanford Underground Research Facility in South Dakota to detect an event that, if seen, would have weighty implications for the nature of the neutrino and its role in the cosmos. ORNL nuclear physicists have lead roles in project management, detector development and design, and detector modeling and simulation. David Radford, who leads the MAJORANA and Advanced Detectors group in ORNL’s Physics Division, joined the MAJORANA Collaboration in 2006. ORNL took on project office leadership in 2009.

The MAJORANA DEMONSTRATOR uses the isotope germanium-76 as both source and detector in a search for “neutrinoless double-beta decay.” The initial experiment, with equipment weighing 88 pounds (40 kilograms), is to demonstrate the feasibility of a much larger ton-scale experiment. If the decay process is observed, it would prove that the neutrino is its own antiparticle, give a measure of the neutrino mass, and provide a possible answer to why the universe is made of matter and not antimatter.

Detecting neutrinos from neutron factories

Two other large, collaborative neutrino experiments, called PROSPECT and COHERENT, are sited in Tennessee at ORNL. These two high energy physics experiments will detect, for the first time, neutrinos generated at two facilities whose main purpose is the production of neutrons.

Two new neutrino detectors for COHERENT and PROSPECT are possible thanks to ORNL’s two world-class neutron “factories,” the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). SNS and HFIR are DOE Office of Science User Facilities.

At ORNL’s neutron factories neutrinos are produced in very large quantities during normal operations. Why not use the neutrinos for experiments too? At SNS, researchers use the proton beam parasitically to generate neutrinos for the COHERENT experiment. At HFIR, the neutrinos to be detected by PROSPECT are produced in the core of the reactor from the decay of fission products.

PROSPECT is a reactor neutrino experiment led by Yale University. Its partners will mine information about neutrino oscillations—transmutations of electron neutrino, muon neutrino and tau neutrino “flavors” from one to another. Specifically, they want to find out if neutrinos oscillate over short distances (less than 20 meters). Short-baseline neutrino oscillations have not been definitively observed. Observing neutrinos from HFIR’s core would allow precision measurements of the neutrino flux and energy spectrum and possibly reveal the existence of a fourth flavor known as “sterile neutrinos.” Seeing this new particle would necessitate revising the Standard Model, which describes elementary particles and the forces that govern them.

“PROSPECT is sited at HFIR because it was identified as the best site for short-baseline neutrino experiments, in part due to the fact that it has the most compact core of any high-power research reactor,” said Chris Bryan, who manages experiments at HFIR for ORNL’s Research Reactors Division. The study involves 68 collaborators from 14 institutions, including 14 from ORNL. Near the reactor, experimenters will place a movable detector system that, including shielding, weighs 30 tons and stands 15 feet tall. The detector system will sit as close as 21 feet to the reactor core. Researchers will fill it with 3 tons of liquid scintillator to detect the flash produced when a neutrino interacts with a proton to form a positron (or anti-electron) and a neutron. A prototype detector has been built at ORNL for tests preparing for the arrival of PROSPECT’s detection instrument, now under construction at Yale. That instrument will be deployed at ORNL’s famous research reactor before data collection begins next year.

COHERENT, a Duke University–led experiment at SNS, has partners from 16 institutions. Its 65 researchers include 8 from ORNL, with Jason Newby, a physicist in the Nuclear Security and Isotope Technology Division, as the ORNL representative to the collaboration. The scientists aim to make first-of-a-kind measurements of a phenomenon predicted by the Standard Model but never observed—the scattering of low-energy neutrinos off various nuclei. “The pulsed nature of the proton beam makes the Spallation Neutron Source a unique facility for this experiment,” said ORNL Physics Division Director David Dean. “In the U.S., the SNS is the best facility for observing coherent, low-energy neutrino scattering.”

Because the SNS accelerator produces pulsed beams of protons, the neutrinos will be pulsed too, allowing researchers to easily separate scientifically significant signals from background noise.

For this test of the Standard Model, a beam of protons will hit a target of mercury, an atom with a big nucleus capable of releasing a slew of particles, including pions that stop in the target, decay and release neutrinos. Because the pions decay at rest, the neutrinos generated will be of low energy and suitable for the scattering experiments. In the SNS basement under the mercury target, these neutrinos will penetrate 20 meters of shielding before being identified by a detector made of a 31-pound scintillating crystal of cesium iodide. Three additional targets of argon, germanium and sodium iodide will be installed this fall.

Owing in large part to ORNL facilities, and large national collaborative efforts, scientists worldwide will soon be better able investigate the nature of these ghostly neutrinos, forcing them out of the dark shadows of the unknown universe.

The U.S. Department of Energy supports neutrino research through its Office of High Energy Physics, with the exception of neutrinoless double-beta decay studies, which are supported by the Office of Nuclear Physics.

Neutrinos loomed large at Nuclear Structure 2016, an international physics conference that ORNL’s Physics Division hosted in Knoxville in July.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit www.science.energy.gov.—by Dawn Levy

X
X
X
  • Filters

  • × Clear Filters

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.

Graphene helps protect photocathodes for physics experiments

Argonne researchers have used thin sheets of graphene to prevent photocathode materials from interacting with air, which increases their lifetimes. Photocathodes are used to convert light to electricity in accelerators and other physics experiments.


  • Filters

  • × Clear Filters

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.

UIC company develops hybrid air-conditioning system with help from DOE

NETenergy, a clean tech startup company based on technology developed at the University of Illinois at Chicago and licensed from UIC, will commercialize its unique hybrid, super-efficient air-conditioning system with funding from the U.S. Department of Energy.The $500,000 grant was awarded to NETenergy's partner, National Renewable Energy Laboratory, as part of the DOE's Technology Commercialization Fund.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility





Showing results

0-4 Of 2215