DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2017-05-01 10:05:50
    • Article ID: 673855

    Microbes Making the Most of Their Energy Sources

    Understanding an enigmatic energy-harnessing process in microorganisms, to inform biofuels research

    • Credit: Image courtesy of Saroj Poudel

      A generalized electron bifurcation reaction. An electron donor provides two electrons that are bifurcated simultaneously to two acceptor molecules with lower energy and higher energy in a hypothetical enzyme.

    • Credit: Image courtesy of Nathan Johnson

      Imagine a blue ball rolls downhill. Normally, it hits the yellow ball at the bottom of the hill, forcing that second sphere to go up the hill. In electron bifurcation, the energy from the blue ball goes into the hill.

    Microorganisms are most typically thought of as biological nuisances that cause disease or spoil food. However, bacteria and other microorganisms are responsible for many important processes on Earth, without which the planet would be uninhabitable for any form of life.

    Microorganisms can even be used to help bridge the gap towards more abundant and economical energy sources. This can occur by microbes that naturally generate biofuels such as hydrogen gas and methane. They can also be engineered to produce other biofuels such as butanol and biodiesel.

    The key is that microorganisms need to harness, or conserve, energy in order to live — as all life does. It just so happens that they can also provide useful byproducts — resultant from their unique means of energy conservation — such as biofuels.

    One mechanism of energy conservation — termed electron bifurcation — was not discovered until as recently as 2008. Before this discovery, there were only two known ways that life forms can conserve energy.

    Several key biofuel targets for next-generation energy development are reliant on electron bifurcation as a means of energy conservation. As a result, this discovery ignited interest from the Department of Energy due to its relevance in hitting targets for next-generation energy development.

    Now scientists at the Biological Electron Transfer and Catalysis (BETCy) Energy Frontier Research Center are beginning to understand how this process works and how it can aid in meeting next-generation energy demands.

    Harnessing energy through electron bifurcation. To understand how electron bifurcation can be leveraged in biofuels research, an understanding of how it works is necessary.

    A unifying theme of all life is that energy must be acquired to fuel biochemical processes that require energy. This is accomplished by coupling reactions that are favorable and provide energy, known as exergonic reactions, to reactions that are unfavorable and require energy input, known as endergonic reactions.

    Imagine a blue ball rolls downhill. Normally, it hits the yellow ball at the bottom of the hill, forcing that second sphere to go up the hill. The energy is transferred between the two spheres in this example. In electron bifurcation, the hill, or enzyme, itself mediates this energy transfer from the blue ball to the yellow ball. In the ball analogy, the energy would power an escalator that simultaneously takes the yellow ball up the hill. The hill manages the energy transfer and separates the motion of both balls, allowing both events to occur instantaneously and separately. 

    Electron bifurcation is similar in this regard. It is unique, however, in that the energy released from the exergonic reaction involves the direct transfer of electrons, and energy is conserved to simultaneously power the unfavorable reaction that also involves the direct transfer of electrons.

    To conceptualize electron bifurcation, imagine two hills with a ball at the top of one hill and one in between the hills. By pushing the first one downhill, the impact pushes the other ball up the other hill. However, this process happens simultaneously in electron bifurcation. Perhaps more directly analogous, imagine the first ball is rolled downhill and that energy is transferred to the hill where it powers an escalator that simultaneously conveys the second ball up the other hill. The hill, in this example, mediates the energy transfer and separates the movements of both balls.

    Analogously, electron bifurcation proceeds through the simultaneous transfer of electrons to both exergonic (downhill) and endergonic (uphill) reaction pathways. The process occurs within a single protein structure, or enzyme, that consists of multiple protein components, or subunits. Recalling the above example, the enzyme acts as the hill that mediates energy transfer. By coupling the two electron transfer reactions within a single enzyme simultaneously, energy loss that would otherwise escape as heat is minimized. Efficiency is critical for bifurcation because the organisms that perform it tend to live in environments where there is little energy. Thus, every bit of energy that is harnessed is crucial for survival.

    Understanding the mechanisms behind electron bifurcation. Unraveling the mechanisms that allow electron bifurcation to occur in microorganisms has clear biotechnological and bio-energy implications. Understanding how microorganisms minimize energy loss during chemical reactions will enable the design of more efficient bio-inspired energy technologies. More directly, several electron bifurcating enzymes are important biotechnological and bio-energy targets. Gaining insight into how these enzymes function at the molecular level will provide a framework for enhancing their utilization in energy science.

    Scientists at the BETCy Energy Frontier Research Center are investigating hydrogenases, which are a type of bifurcating enzyme that catalyze the production of hydrogen gas during cellular metabolism in microorganisms. Hydrogenases display high rates of hydrogen production and are thus highly sought-after bio-energy targets. This microbially produced hydrogen can then be harnessed and used as an alternative fuel source.

    Interestingly, some hydrogenases catalyze hydrogen production through electron bifurcation (or rather, a version of bifurcation that operates in reverse as the above example). Yet, other than the discovery of the process in hydrogenases, little is known about how it occurs at the molecular level.

    Recently, BETCy scientists compared the gene and protein repertoires of microbes that contain hydrogenases (bifurcating and non-bifurcating). The team’s goal was to better understand which hydrogenase enzyme components are determinants of the ability to bifurcate. These comparisons indicated that, aside from the enzyme subunit that catalyzes hydrogen production, additional enzyme protein components were likely necessary for bifurcating ability.

    The team found that the presence of protein subunits that contain specific electron transferring inorganic components (coordinated iron and sulfur molecules) appear to be one key to bifurcation. In addition, organic electron transferring subunits (termed flavins — naturally occurring pigments) also appeared to be key to bifurcation ability. In other types of bifurcating enzymes, these electron transferring protein components are also almost certainly integral to the bifurcating process.

    Untangling how electrons taken from a single source are sent down two different transfer pathways is a major focus of bifurcation research. Naturally, electrons should be transferred through the exergonic (downhill) pathway without active interference, forcing them towards the endergonic (uphill) pathway. One idea being investigated by BETCy involves an electron “gating” mechanism. Gating by the protein subunits would allow the transfer and separation of each set of electrons towards endergonic and exergonic pathways. This is where the iron-sulfur and flavin electron transfer components of the enzymes become important. These co-factors then mediate the transfer of electrons through each of these pathways.

    Thus, analogous to the ball and hill example, the first electron transfer downhill would drive an enzyme change that simultaneously forces the other electron up the other hill.

    Clearly, electron bifurcation represents an intriguing energy transfer process in biology. Understanding how this process occurs, as the BETCy team is investigating, promises significant advances in understanding biological energy transfer. Further, a more complete understanding of these processes holds substantial promise for bio-inspired energy advances.

    Acknowledgments: 

    Peters et al. This work was supported as part of the Biological Electron Transfer and Catalysis (BETCy) Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. P.W.K. was supported by the U.S. Department of Energy contract with the National Renewable Energy Laboratory.

    Poudel et al. This work was supported as part of the Biological Electron Transfer and Catalysis Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mass spectrometry facility at Montana State University receives funding from the Murdock Charitable Trust and National Institutes of Health of the Centers of Biomedical Research Excellence program.

    More Information: 

    Peters JW, AF Miller, AK Jones, PW King, and MW Adams. 2016. “Electron Bifurcation.” Current Opinion in Chemical Biology 31:146-152. DOI: 10.1016/j.cbpa.2016.03.007

    Poudel S, M Tokmina-Lukaszewska, DR Colman, M Refai, GJ Schut, PW King, PC Maness, MW Adams, JW Peters, B Bothner, and ES Boyd. 2016. “Unification of [FeFe]-Hydrogenases into Three Structural and Functional Groups.” Biochimica et Biophysica Acta 1860(9):1910-1921. DOI: 10.1016/j.bbagen.2016.05.034

    This item, written by Dan Colman, is part of Frontiers in Energy Research, a newsletter for the Energy Frontier Research Centers created by early career members of the centers. See http://www.energyfrontier.us/newsletter/

    X
    X
    X
    • Filters

    • × Clear Filters
    Scientists Successfully Demonstrate a New Experiment in the Search for Theorized 'Neutrinoless' Process

    Scientists Successfully Demonstrate a New Experiment in the Search for Theorized 'Neutrinoless' Process

    Nuclear physicists affiliated with Berkeley Lab played a leading role in analyzing data for a demonstration experiment in France that has achieved record precision for a specialized detector material.

    Argonne soil carbon research reduces uncertainty in predicting climate change impacts

    Argonne soil carbon research reduces uncertainty in predicting climate change impacts

    DOE and USDA researchers use new global models to study how environmental controllers affect soil organic carbon, changes in which can alter atmospheric carbon concentrations and affect climate. Predictions could benefit industry mitigation plans.

    Learning more about particle collisions with machine learning

    Learning more about particle collisions with machine learning

    A team of Argonne scientists has devised a machine learning algorithm that calculates, with low computational time, how the ATLAS detector in the Large Hadron Collider would respond to the ten times more data expected with a planned upgrade in 2027.

    New cathode coating extends lithium-ion battery life, boosts safety

    New cathode coating extends lithium-ion battery life, boosts safety

    The U.S. Department of Energy's Argonne National Laboratory, in collaboration with Hong Kong University of Science and Technology, has developed a new particle-level cathode coating for lithium ion batteries meant to increase their life and safety.

    Scientists Dive Deep Into Hidden World of Quantum States

    Scientists Dive Deep Into Hidden World of Quantum States

    A research team led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a technique that could lead to new electronic materials that surpass the limitations imposed by Moore's Law.

    Precise Measurement of Pions Confirms Understanding 
of Fundamental Symmetry

    Precise Measurement of Pions Confirms Understanding of Fundamental Symmetry

    Nuclear physicists have announced the most precise measurement yet of the ultra-short lifetime of the neutral pion. The result is an important validation of our understanding of the theory of quantum chromodynamics, which describes the makeup of ordinary matter. The research, carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility, was recently published in the journal Science.

    Story Tips: Predicting fire risk, solid state stability check and images in a flash

    Story Tips: Predicting fire risk, solid state stability check and images in a flash

    ORNL Story Tips: Predicting fire risk, solid state stability check and images in a flash

    Summit Helps Predict Molecular Breakups

    Summit Helps Predict Molecular Breakups

    A team used the Summit supercomputer to simulate transition metal systems--such as copper bound to molecules of nitrogen, dihydrogen, or water--and correctly predicted the amount of energy required to break apart dozens of molecular systems, paving the way for a greater understanding of these materials.

    Carbon-loving materials designed to reduce industrial emissions

    Carbon-loving materials designed to reduce industrial emissions

    Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, Knoxville, are advancing gas membrane materials to expand practical technology options for reducing industrial carbon emissions.

    Science Snapshots July 2020

    Science Snapshots July 2020

    Berkeley Lab Science Snapshots July 2020


    • Filters

    • × Clear Filters
    Argonne to explore how digital twins may transform nuclear energy with $8 million from ARPA-E's GEMINA program

    Argonne to explore how digital twins may transform nuclear energy with $8 million from ARPA-E's GEMINA program

    ARPA-E's GEMINA funding will allow Argonne's nuclear scientists to partner with industry and develop tools for the advanced reactors of tomorrow.

    Brookhaven and Forge Nano to Mature Noble Gas-Trapping Technology

    Brookhaven and Forge Nano to Mature Noble Gas-Trapping Technology

    Through DOE's Technology Commercialization Fund, the national lab-startup team will develop "nanocages" for nuclear applications.

    Chicago Quantum Exchange welcomes seven new partners in tech, computing and finance, to advance research and training

    Chicago Quantum Exchange welcomes seven new partners in tech, computing and finance, to advance research and training

    The Chicago-based research hub expands to include 13 total industry leaders in tech, computing, finance.

    EIC Center at Jefferson Lab Announces Six New Research Awards

    EIC Center at Jefferson Lab Announces Six New Research Awards

    The Electron-Ion Collider Center at the Department of Energy's Thomas Jefferson National Accelerator Facility (EIC Center at Jefferson Lab) has announced the winners of six international fellowships. The fellows will pursue research over the next year related to advancing the science program of the Electron-Ion Collider (EIC), a one-of-a-kind nuclear physics research facility to be built over the next decade at DOE's Brookhaven National Laboratory in Upton, New York, in partnership with Jefferson Lab.

    Department of Energy awards $3.15 million to Argonne to support collaborations with industry

    Department of Energy awards $3.15 million to Argonne to support collaborations with industry

    The U.S. Department of Energy (DOE) announced more than $33 million in funding for 82 projects aimed at advancing commercialization of promising energy technologies and strengthening partnerships between DOE's National Laboratories and private-sector companies.

    Analyzing Matter's Building Blocks

    Analyzing Matter's Building Blocks

    Nobuo Sato is working to put the know in femto. He's just been awarded a five-year, multimillion dollar research grant by the Department of Energy to develop a "FemtoAnalyzer" that will help nuclear physicists image the three-dimensional internal structure of protons and neutrons. Now, Sato is among 76 scientists nationwide who have been awarded a grant through the DOE Office of Science's Early Career Research Program to pursue their research.

    Particle Physicist Takes the Lead on Groundbreaking Electron Measurement

    Particle Physicist Takes the Lead on Groundbreaking Electron Measurement

    James "Jim" Fast has joined Jefferson Lab as the MOLLER Project Manager. MOLLER is the "Measurement of a Lepton-Lepton Electroweak Reaction" experiment that will measure the weak charge of the electron.

    Six Argonne researchers receive DOE Early Career Research Program awards

    Six Argonne researchers receive DOE Early Career Research Program awards

    Argonne scientists Michael Bishof, Maria Chan, Marco Govini, Alessandro Lovato, Bogdan Nicolae and Stefan Wild have received funding for their research as part of DOE's Early Career Research Program.

    Three Fermilab scientists receive DOE Early Career Research Awards

    Three Fermilab scientists receive DOE Early Career Research Awards

    The Department of Energy's Office of Science has selected three Fermilab scientists to receive the 2020 DOE Early Career Research Award, now in its 11th year. The prestigious award is designed to bolster the nation's scientific workforce by providing support to exceptional researchers during the crucial early years, when many scientists do their most formative work.

    ExOne licenses ORNL method to 3D print components for refined neutron scattering

    ExOne licenses ORNL method to 3D print components for refined neutron scattering

    The Department of Energy's Oak Ridge National Laboratory has licensed a novel method to 3D print components used in neutron instruments for scientific research to the ExOne Company, a leading maker of binder jet 3D printing technology.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business





    Showing results

    0-4 Of 2215