DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2017-09-28 22:05:05
    • Article ID: 681997

    A Potential New and Easy Way to Make Attosecond Laser Pulses: Focus a Laser on Ordinary Glass

    This novel method could shrink the equipment needed to make laser pulses that are billionths of a billionth of a second long for studying ultra-speedy electron movements in solids, chemical reactions and future electronics.

    • Credit: Greg Stewart/SLAC National Accelerator Laboratory

      In this illustration, a near-infrared laser beam hits a piece of ordinary glass and triggers a process called high harmonic generation. It produces laser light pulses (top right) that are just billionths of a billionth of a second, or attoseconds, long, and the photons in those pulses are much higher energy than those in the original beam. The insets zoom in on how this happens. When the incoming laser light knocks electrons (e-) out of atoms in the glass, they fly away, loop back and reconnect with either their home atom (lower right) or a neighboring atom (upper left). These reconnections generate bright bursts of light, forming a “train” of attosecond pulses that leaves the glass and can be used to probe electron movements in solids.

    • Credit: Chris Smith/SLAC National Accelerator Laboratory

      Postdoctoral researcher Yong Sing You, left, and staff scientist Shambhu Ghimire in the PULSE laser lab at SLAC where the experiments were carried out.

    The discovery 30 years ago that laser light can be boosted to much higher energies and shorter pulses - just billionths of a billionth of a second, or attoseconds, long - is the basis of attosecond science, where researchers observe and try to control the movements of electrons. Electrons are key players in chemical reactions, biological processes, electronics, solar cells and other technologies, and only pulses this short can make snapshots of their incredibly swift moves.

    Now scientists from the Stanford PULSE Institute at the Department of Energy’s SLAC National Accelerator Laboratory have found a potential new way to make attosecond laser pulses using ordinary glass - in this case, the cover slip from a microscope slide.

    The discovery, reported in Nature Communications today, was a real surprise and opens new possibilities for attosecond science and technology, including the ability to probe ultra-speedy electron motions inside glasses and other solid materials. It could also dramatically shrink the size and cost of the setups needed to produce these tiny pulses, to the point where you might be able to generate pulses inside a fiber optic cable that delivers them to where they’re needed.

    “With today’s methods, you have to shine the laser beam through a special gas jet or through a crystal that has to be grown with great care at ultra-cold temperatures,” said Yong Sing You, a postdoctoral researcher at PULSE and lead author of the study. “But this is exciting because you can use everyday glass, which is cheap and easily available, at room temperature. If you were to put your eyeglasses into the experiment, it would still work, and it would not even damage the glasses.”

    A String of Surprises

    The process that generates attosecond laser pulses is called high harmonic generation, or HHG. Much like pressing on a guitar string produces a note that’s higher in pitch, shining laser light through certain materials changes the nature of the light, shifting it to higher energies and shorter pulses than a laser can reach on its own.

    Most of the time this is done in a gas. Incoming photons, or particles of light, from the laser hit atoms in the gas and liberate some of their electrons. The freed electrons fly away, loop back and reconnect with their home atoms. This reconnection generates attosecond bursts of light that combine to form an attosecond laser pulse.

    Starting in 2010, a series of experiments led by PULSE researchers Shambhu Ghimire and David Reis showed HHG can be produced in ways that were previously thought unlikely or even impossible: by beaming laser light into a crystalfrozen argon gas or an atomically thin semiconductor material.

    Unlike a gas, whose atoms are so far apart that you can think of them as behaving independently, atoms in a solid are so close together that scientists thought electrons freed by an incoming laser pulse would hit neighboring atoms, scatter and never return home to make that crucial reconnection. But it turned out this was not the case, Reis said: “There’s something about the orderly structure of the crystal that allows electrons to move throughout the lattice in a way that doesn’t dissipate their energy or give them a kick in some other direction. Even if they connect with a neighboring atom, they can still participate in HHG.”

    Fundamental Science with Practical Potential

    The fact that glass could generate HHG was also a surprise, said Ghimire, who helped lead the latest study. Because it’s amorphous, meaning that its silicon and oxygen atoms are arranged in no particular order, it did not seem like a good candidate.

    But glass’s random nature was just what the team needed to answer the fundamental scientific question at the heart of the study: How do the density and crystallinity of a material - the degree to which its atoms are arranged in an orderly lattice – independently affect its ability to produce HHG? A piece of glass and a quartz crystal are both made of silicon and oxygen, and they’re roughly the same density; only the arrangement of their atoms is different. So comparing the two should provide some answers.

    The scientists put the glass cover slip in their apparatus and hit it with pulses from their infrared laser beam.

    “You might think, again, that this wouldn’t work, because the electrons would bounce off their neighbors and never make it back home,” said Reis, who was not involved in the current paper. “But the surprising thing is that even in glass, if you hit the glass hard enough but not so hard that you break it, it works fine, although by a slightly different process.”

    The ability to produce HHG in glass and other solids is exciting, he said, because it has the potential to shrink the equipment needed to do this from the size of a lab bench to maybe just a few nanometers - billionths of a meter - in size.

    Ghimire added that producing harmonics in glass has potential technological applications. For instance, it produces the short wavelengths of laser light needed to design masks for patterning nanometer-scale features on semiconductor chips.

    “For this, they want as much intensity as possible, and also an easy way to deliver light to their samples,” he said. “Being able to produce short-wavelength laser light in normal glass would bring us a couple of steps closer to something they could actually use. We could even generate the short-wavelength light in the glass portion of optical fibers that then deliver it to wherever they wanted it.”

    The Stanford PULSE Institute is an independent laboratory of Stanford University as well as a research center within the SLAC Science Directorate. This research was done in collaboration with scientists at the University of Central Florida. The DOE Office of Science funded the work at PULSE through an Early Career Research Program award to Ghimire. The work in Florida was funded by the Air Force Office of Scientific Research, the Army Research Office, the DARPA PULSE program and the National Science Foundation.


    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit

    SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

    • Filters

    • × Clear Filters

    Experiments at PPPL show remarkable agreement with satellite sightings

    Feature describes striking similarity of laboratory research findings with observations of the four-satellite Magnetospheric Multiscale Mission that studies magnetic reconnection in space.

    New X-ray imaging approach could boost nanoscale resolution for Advanced Photon Source Upgrade

    A long-standing problem in optics holds that an improved resolution in imaging is offset by a loss in the depth of focus. Now, scientists are joining computation with X-ray imaging as they develop a new and exciting technique to bypass this limitation.

    Two-dimensional materials skip the energy barrier by growing one row at a time

    News Release RICHLAND, Wash. -- A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory and University of California, Los Angeles could provide engineers new design rules for creating microelectronics, membranes, and tissues, and open up better production methods for new materials.

    Blasting Molecules with Extreme X-Rays

    To understand how damage from high-energy X-rays affects imaging studies, scientists supported by the Department of Energy shot the most powerful X-ray laser in the world at a series of atoms and molecules. Surprisingly, the atoms within the molecules acted far differently than the isolated ones.

    Scientists Enter Unexplored Territory in Superconductivity Search

    Scientists mapping out the quantum characteristics of superconductors--materials that conduct electricity with no energy loss--have entered a new regime. Using newly connected tools named OASIS at Brookhaven Lab, they've uncovered previously inaccessible details of the "phase diagram" of one of the most commonly studied "high-temperature" superconductors.

    Human Exposures and Health Effects Associated with Unconventional Oil and Gas Development

    The Health Effects Institute (HEI) convened an Energy Research Committee to help ensure the protection of public health during such development. A symposium at the 2018 Society for Risk Analysis (SRA) Annual Meeting will summarize the Committee's review approach and preliminary findings and provide initial options for future research intended to fill knowledge gaps.

    Reflecting Antiferromagnetic Arrangements

    Scientists have demonstrated an x-ray imaging technique that could enable the development of smaller, faster, and more robust electronics that exploit electron spin.

    Researchers demonstrate new building block in quantum computing

    Researchers with the Department of Energy's Oak Ridge National Laboratory have demonstrated a new level of control over photons encoded with quantum information. The team's experimental system allows them to manipulate the frequency of photons to bring about superposition, a state that enables quantum operations and computing.

    Story Tips from the Department of Energy's Oak Ridge National Laboratory, December 2018

    ORNL solved methane mystery through tree trunk, soil study; neutrons unlock secrets of corn nanoparticles; lithium-ion battery study could inform safer designs; corrosion tests could advance molten salt reactor designs; thought leaders discuss sea of energy change at maritime risk meeting.

    To curb maternal deaths in developing countries, researchers use X-rays to map a lifesaving drug in action

    A team that includes researchers from the Bridge Institute at the University of Southern California (USC) and the Department of Energy's SLAC National Accelerator Laboratory used X-rays to map the shape of a receptor in the body as it binds with misoprostol. This research, published in Nature Chemical Biology, could help in the quest to design low-cost drugs that can tackle postpartum bleeding without affecting other tissues.

    • Filters

    • × Clear Filters

    Blast to the future

    A grant from DOE's Technology Commercialization Fund will help researchers at Argonne and industry partners seek improvements to U.S. manufacturing by making discovery and design of new materials more efficient.

    Department of Energy to Provide $24 Million for Computer-Based Materials Design

    The U.S. Department of Energy (DOE) announced plans to provide $24 million in new and renewal research awards to advance the development of sophisticated software for computer-based design of novel materials.

    Argonne scientists recognized for decades of pioneering leadership in research

    Argonne scientists Ali Erdemir and Jack Vaughey were named 2018 Fellows of the American Association for the Advancement of Science (AAAS).

    Kurfess, Smith join ORNL to lead advanced manufacturing initiatives

    Two leaders in US manufacturing innovation, Thomas Kurfess and Scott Smith, are joining the Department of Energy's Oak Ridge National Laboratory to support its pioneering research in advanced manufacturing.

    Four Berkeley Lab Scientists Named AAAS Fellows

    Four Berkeley Lab scientists - Allen Goldstein, Sung-Hou Kim, Susannah Tringe, and Katherine Yelick - have been named Fellows of the American Association for the Advancement of Science, the world's largest general scientific society.

    U.S. Department of Energy to Host Nationwide CyberForce Competition(tm) December 1

    Students from dozens of colleges/universities will participate in the U.S. Department of Energy's CyberForce Competition(tm) this weekend

    Seven ORNL researchers named 2019 INCITE award winners

    Seven researchers from the Department of Energy's Oak Ridge National Laboratory have been chosen by the Innovative and Novel Computational Impact on Theory and Experiment, also known as INCITE, program to lead scientific investigations that require the nation's most powerful computers. The ORNL-based projects span a broad range of the scientific spectrum and represent the potential of high-performance computing in ensuring America's scientific competitiveness and energy security.

    DOE Laboratories Win Gordon Bell Prize

    Two U.S. Department of Energy (DOE) National Laboratories were recently awarded the 2018 Association for Computing Machinery's (ACM's) Gordon Bell Prize.

    Department of Energy Announces 32 R&D 100 Award Winners

    DOE researchers have won 32 of the R&D 100 awards given out this year by R&D Magazine. The annual awards are given in recognition of exceptional new products or processes that were developed and introduced into the marketplace during the previous year.

    Jefferson Lab Shares 2018 R&D 100 Award for Cancer Treatment Monitoring System

    The OARtrac(r) system, built by RadiaDyne and including technologies developed by scientists at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, has been awarded a 2018 R&D 100 Award by R&D Magazine.

    • Filters

    • × Clear Filters

    Subtlety and the Selective Art of Separating Lanthanides

    Unexpected molecular interactions involving water clusters have a subtle, yet profound, effect on extractants picking their targets.

    Review Examines the Science and Needs of Nitrogen-Based Transformations

    Advances in biochemistry and catalysis could lead to faster, greener nitrogen-rich fertilizer.

    Quickly Capture Tiny Particles Reacting

    New method takes a snapshot every millisecond of groups of light-scattering particles, showing what happens during industrially relevant reactions.

    New Technology Consistently Identifies Proteins from a Dozen Cells

    A new platform melding microfluidics and robotics allows more in-depth bioanalysis with fewer cells than ever before.

    Optimal Foraging: How Soil Microbes Adapt to Nutrient Constraints

    How microbial communities adjust to nutrient-poor soils at the genomic and proteomic level gives scientists insights into land use.

    Microbes Eat the Same in Labs and the Desert

    Analyses of natural communities forming soil crusts agree with laboratory studies of isolated microbe-metabolite relationships.

    Diverse Biofeedstocks Have High Ethanol Yields and Offer Biorefineries Flexibility

    Evidence suggests that biorefineries can accept various feedstocks without negatively impacting the amount of ethanol produced per acre.

    Opening Access to Explore the Synthetic Chemistry of Neptunium

    New, easily prepared starting material opens access to learning more about a difficult-to-control element in nuclear waste.

    Tiny Titanium Barrier Halts Big Problem in Fuel-Producing Solar Cells

    New design coats molecular components and dramatically improves stability under tough, oxidizing conditions.

    Turning Wood Scraps into Tape

    A new chemical process converts a component of wasted wood pulp and other biomass into high-value pressure-sensitive adhesives.


    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory

    Showing results

    0-4 Of 2215