Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-05 14:00:42
  • Article ID: 682392

International Team Reconstructs Nanoscale Virus Features from Correlations of Scattered X-rays

Team uses Berkeley Lab CAMERA's M-TIP algorithm to enable visualization

  • Credit: Jeff Donatelli, Berkeley Lab

    Reconstructed Viruses: Reconstructions of a rice dwarf virus (top) and a PR772 bacteriophage (bottom) from experimental correlation data using M-TIP. The images on the right show asymmetries in the internal genetic material for each virus reconstruction.

  • Credit: Marilyn Chung, Berkeley Lab

    CAMERA members (from left) Peter Zarat, Jeff Donatelli and Kanupriya Pande, co- authors of a paper describing how the group’s M-TIP framework helped reconstruct a single molecule virus using light refractions. Donatelli holds a 3D-printed model of the virus.

As part of an international research team, Jeff Donatelli, Peter Zwart and Kanupriya Pande of the Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory (Berkeley Lab) contributed key algorithms which helped achieve a goal first proposed more than 40 years ago – using angular correlations of X-ray snapshots from non-crystalline molecules to determine the 3D structure of important biological objects. This technique has the potential to allow scientists to shed light on biological structure and dynamics that were previously impossible to observe with traditional X-ray methods.

The breakthrough resulted from a single-particle diffraction experiment conducted at the Department of Energy’s (DOE’s) Linac Coherent Light Source (LCLS) by the Single-Particle Initiative organized by the SLAC National Accelerator Laboratory. As part of this initiative, the CAMERA team combined efforts with Ruslan Kurta, a physicist at the European XFEL (X-ray free electron laser) facility in Germany, to analyze angular correlations from the experimental data and use CAMERA’s multi-tiered iterative phasing (M-TIP) algorithm to perform the first successful 3D virus reconstructions from experimental correlations. The results were described in a paper recently published in the of Physical Review Letters.

“For the past 40 years, this was considered a problem that could not be solved,” said Peter Zwart, co-author on the paper and a physical bioscientist who is a member of CAMERA based out of the Molecular Biophysics and Integrated Imaging Division at Berkeley Lab. “But it turns out that the mathematical tools that we developed are able to leverage extra information hidden in the problem that had been previously overlooked. It is gratifying to see our theoretical approach lead to a practical tool.”

New Research Opportunities Enabled by XFELs

For much of the last century, the go-to technique for determining high-resolution molecular structure has been X-ray crystallography, where the sample of interest is arranged into a large periodic lattice and exposed to X-rays which scatter off and form diffraction patterns that are collected on a detector. Even though crystallography has been successful at determining many high-resolution structures, it is challenging to use this technique to study structures which are not susceptible to crystallization or structural changes that do not naturally occur within a crystal.

The creation of XFEL facilities, including the Linac Coherent Light Source (LCLS) and the European X-FEL, have created opportunities for conducting new experiments which can overcome the limitations of traditional crystallography. In particular, XFEL beams are several orders of magnitude brighter than and have much shorter pulse lengths than traditional X-ray light sources, which allow them to collect measurable diffraction signal from smaller uncrystallized samples and, more importantly, study fast dynamics. Single-particle diffraction is one such emerging experimental technique enabled by XFELS, where one collects diffraction images from single molecules instead of crystals. These single-particle techniques can be used to study molecular structure and dynamics that have been hard to study with traditional imaging techniques.

Overcoming Limitations in Single-Particle Imaging via Angular Correlations

One major challenge of single-particle imaging is that of orientation determination. “In a single-particle experiment, you don’t have control over rotation of the particles as they are hit by the X-ray beam, so each snapshot from a successful hit will contain information about the sample from a different orientation,” said co-author Jeff Donatelli, an applied mathematician in CAMERA who developed many of the algorithms in the new framework. “Most approaches to single-particle analysis have so far been based on trying to determine these particle orientations from the images; however, the best resolution achievable from these analyses is restricted by how precisely these orientations can be determined from noisy data.”

Instead of trying to directly determine these orientations, the team took a different approach based on idea originally proposed in the 1970s by Zvi Kam. “Rather than examine the individual data intensities in an attempt to find the correct orientation for each measured frame, we eliminate this step altogether by using so-called cross-correlation functions,” Kurta said.

 This approach, known as fluctuation X-ray scattering, is based on analyzing the angular correlations of ultrashort, intense X-ray pulses scattered from non-crystalline biomolecules. ”The beauty of using correlation data is that it contains a comprehensive fingerprint of the 3D structure of an object that extends traditional solution scattering approaches,” Zwart said.

Reconstructing 3D Structure from Correlations with CAMERA’s M-TIP Algorithm

The team’s breakthrough in reconstructing 3D structure from correlation data was enabled by the multi-tiered iterative phasing (M-TIP) algorithm developed by CAMERA. “Among the prominent advantages of M-TIP is its ability to solve the structure directly from the correlation data without having to rely on any symmetry constraints, and, more importantly, without the need to solve the orientation determination problem,” Donatelli said.

Donatelli, CAMERA leader James Sethian and Zwart developed their M-TIP framework by developing a mathematical generalization of a class of algorithms known as iterative phasing techniques, which are used in determining structure in a simpler problem, known as phase retrieval. A paper describing the original M-TIP framework was published August 2015 in the Proceedings of the National Academy of Sciences.

“Advanced correlation analyses in combination with ab-initio reconstructions by M-TIP clearly define an efficient route for structural analysis of nanoscale objects at XFELs,” Zwart said.

Future Directions for Correlation Analysis and M-TIP

The team notes that methods used in this analysis can also be applied to analyze diffraction data when there is more than one particle per shot.

“Most algorithms for single-particle imaging can only handle one molecule at a time, thus limiting signal and resolution. Our approach, on the other hand, is scalable so that we should also be able to measure more than one particle at a time,” said Kurta. Imaging with more than one particle per shot will allow scientists to achieve much higher hit rates, since it is easier to use a wide beam and hit many particles at a time, and will also avoid the need to separate out single-particle hits from multiple-particle hits and blank shots, which is another challenging requirement in traditional single-particle imaging.

As part of CAMERA’s suite of computational tools, they have also developed a different version of M-TIP which solves the orientation problem and can classify the images into conformational states, and consequently can used to study small biological differences in the measured sample. This alternate version of M-TIP was described in a paper published June 26 2017 in the Proceedings of the National Academy of Sciences. This alternate version of M-TIP is part of new collaboration initiative between SLAC National Accelerator Laboratory, CAMERA, the National Energy Research Scientific Computing Center (NERSC) and Los Alamos National Laboratory as part of DOE’s Exascale Computing Project (ECP).

This work was supported by the offices of Advanced Scientific Computing Research and Basic Energy Sciences in the Department of Energy’s Office of Science and the National Institute of General Medical Sciences at the National Institutes of Health. LCLS and NERSC are both DOE Office of Science User Facilities.

The Office of Science supports Berkeley Lab. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater than the sum of its parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.

Graphene helps protect photocathodes for physics experiments

Argonne researchers have used thin sheets of graphene to prevent photocathode materials from interacting with air, which increases their lifetimes. Photocathodes are used to convert light to electricity in accelerators and other physics experiments.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

The Next Phase: Using Neural Networks to Identify Gas-Phase Molecules

Argonne scientists have developed a neural network that can identify the structure of molecules in the gas phase, offering a novel technique for national security and pharmaceutical applications.


  • Filters

  • × Clear Filters

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.

UIC company develops hybrid air-conditioning system with help from DOE

NETenergy, a clean tech startup company based on technology developed at the University of Illinois at Chicago and licensed from UIC, will commercialize its unique hybrid, super-efficient air-conditioning system with funding from the U.S. Department of Energy.The $500,000 grant was awarded to NETenergy's partner, National Renewable Energy Laboratory, as part of the DOE's Technology Commercialization Fund.

STAR Team Receives Secretary's Achievement Award

The Brookhaven Lab scientists, engineers, and support staff who run the Solenoidal Tracker (STAR) experiment at the Lab's Relativistic Heavy Ion Collider (RHIC) received one of 17 Achievement Awards presented by Secretary of Energy Rick Perry at the Secretary's Honor Awards ceremony held in Washington, D.C. August 29.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory





Showing results

0-4 Of 2215