Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-09 21:05:30
  • Article ID: 682579

Ceramic Pump Moves Molten Metal at a Record 1,400 Degrees Celsius

Device could help store energy from renewables

  • Credit: Credit: Caleb Amy

    This image shows liquid metal flowing at 1400 degrees Celsius in the laboratory of Asegun Henry at Georgia Tech. Even though all the surrounding materials are glowing, the tin remains reflective and the ripples from the pool of tin below are visible via reflections from the stream.

  • Credit: Christopher Moore, Georgia Tech

    Georgia Tech Graduate Student Caleb Amy shows how two ceramic gears mesh in a pump developed to transfer molten tin at more than 1,400 degrees Celsius.

  • Credit: Christopher Moore, Georgia Tech

    Graduate Student Caleb Amy pours molten tin into a crucible in the laboratory of Asegun Henry at Georgia Tech. A new ceramic-based pump designed and tested at Georgia Tech was used to transfer molten tin at more than 1,400 degrees Celsius.

A ceramic-based mechanical pump able to operate at record temperatures of more than 1,400 degrees Celsius (1,673 Kelvin) can transfer high temperature liquids such as molten tin, enabling a new generation of energy conversion and storage systems.

The new pump could facilitate high efficiency, low-cost thermal storage, providing a new way to store renewable energy generated by wind and solar power, and facilitate an improved process for generating hydrogen directly from fuels such as methane – without producing carbon dioxide. Use of ceramic components, normally considered too brittle for mechanical systems, was made possible by precision machining – and seals made from another high-temperature material: graphite.

The research was supported by the Advanced Research Projects Agency – Energy (ARPA-E) and reported in the October 12 issue of the journal Nature. The pump was developed by researchers from the Georgia Institute of Technology with collaborators from Purdue University and Stanford University.

“Until now, we’ve had a ceiling for the highest temperatures at which we could move heat and store it, so this demonstration really enables energy advances, especially in renewables,” said Asegun Henry, an assistant professor in Georgia Tech’s Woodruff School of Mechanical Engineering. “The hotter we can operate, the more efficiently we can store and utilize thermal energy. This work will provide a step change in the infrastructure because now we can use some of the highest temperature materials to transfer heat. These materials are also the hardest materials on Earth.”

Thermal energy, fundamental to power generation and many industrial processes, is most valuable at high temperatures because entropy – which makes thermal energy unavailable for conversion – declines at higher temperatures. Liquid metals such as molten tin and molten silicon could be useful in thermal storage and transfer, but until now, engineers didn’t have pumps and pipes that could withstand such extreme temperatures.

“The hotter you can operate, the more you can convert thermal energy to mechanical energy or electrical energy,” Henry explained. “But when containment materials like metals get hot, they become soft and that limits the whole infrastructure.”

Ceramic materials can withstand the heat, but they are brittle – and many researchers felt they couldn’t be used in mechanical applications like pumps. But Henry and graduate student Caleb Amy – the paper’s first author – decided to challenge that assumption by trying to make a ceramic pump. “We weren’t certain that it wouldn’t work, and for the first four times, it didn’t,” Henry said.

The researchers used an external gear pump, which uses rotating gear teeth to suck in the liquid tin and push it out of an outlet. That technology differs from centrifugal and other pump technologies, but Henry chose it for its simplicity and ability to operate at relatively low speeds. The gears were custom-manufactured by a commercial supplier and modified in Henry’s lab in the Carbon Neutral Energy Solutions (CNES) building at Georgia Tech.

“What is new in the past few decades is our ability to fabricate different ceramic materials into large chunks of material that can be machined,” Henry explained. “The material is still brittle and you have to be careful with the engineering, but we’ve now shown that it can work.”

Addressing another challenge, the researchers used another high-temperature material – graphite – to form the seals in the pump, piping and joints. Seals are normally made from flexible polymers, but they cannot withstand high temperatures. Henry and Amy used the special properties of graphite – flexibility and strength – to make the seals. The pump operates in a nitrogen environment to prevent oxidation at the extreme temperatures.

The pump operated for 72 hours continuously at a few hundred revolutions per minute at an average temperature of 1,473 Kelvin – with brief operation up to 1,773 Kelvin in other experimental runs. Because the researchers used a relatively soft ceramic known as Shapal for ease of machining, the pump sustained wear. But Henry says other ceramics with greater hardness will overcome that issue, and the team is already working on a new pump made with silicon carbide.

Among the most interesting applications for the high-temperature pump would be low-cost grid storage for surplus energy produced by renewables – one of the greatest challenges to the penetration of renewables on the grid. Electricity produced by solar or wind sources could be used to heat molten silicon, creating thermal storage that could be used when needed to produce electricity.

“It appears likely that storing energy in the form of heat could be cheaper than any other form of energy storage that exists,” Henry said. “This would allow us to create a new type of battery. You would put electricity in when you have an excess, and get electricity back out when you need it.”

The Georgia Tech researchers are also looking at their molten metal pump as part of a system to produce hydrogen from methane without generating carbon dioxide. Because liquid tin doesn’t react with hydrocarbons, bubbling methane into liquid tin would crack the molecule to produce hydrogen and solid carbon – without generating carbon dioxide, a greenhouse gas.

The pump could also be used to allow higher temperature operation in concentrated solar power applications, where molten salts are now used. The combination of liquid tin and ceramics would have an advantage in being able to operate at higher temperatures without corrosion, enabling higher efficiency and lower cost.

The ceramic pump uses gears just 36 millimeters in diameter, but Henry says scaling it up for industrial processing wouldn’t require dramatically larger components. For example, by increasing the pump dimensions by only four or five times and operating the pump near its maximum rated speed, the total heat that could be transferred would increase by a factor of a thousand, from 10 kW to 100 MW, which would be consistent with utility-scale power plants.

For storage, molten silicon – with still higher temperatures – may be more useful because of its lower cost. The pump could operate at much higher temperatures than those demonstrated so far, even past 2,000 degrees Celsius, Henry said.

This research was supported by the Advanced Research Projects Agency – Energy (ARPA-E) under award DE-AR0000339. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agency.

CITATION: Caleb Amy, et al., “Pumping Liquid Metal at High Temperatures Up To 1,673 K,” Nature, 2017.

 

X
X
X
  • Filters

  • × Clear Filters

Scientists Discover Path to Improving Game-Changing Battery Electrode

Researchers from Stanford University, two Department of Energy national labs and the battery manufacturer Samsung created a comprehensive picture of how the same chemical processes that give cathodes their high capacity are also linked to changes in atomic structure that sap performance.

ESnet's Petascale DTN Project Speeds up Data Transfers between Leading HPC Centers

A new Petascale Data Transfer Node project aims to to achieve regular disk-to-disk, end-to-end transfer rates of one petabyte per week between major supercomputing facilities, which translates to achievable throughput rates of about 15 Gbps on real world science data sets.

Underappreciated Microbes Now Get Credit for Holding Down Two Jobs in Soil

Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.

Energy, Economy, and the Earth: The Benefits of Creating Feedback Loops

Scientists reduce uncertainties in future climate prediction by directly coupling an energy-economy model to an Earth system model.

How Grasslands Regulate Their Productivity in Response to Droughts

Scientists show that grasslands are more sensitive to changes in the amount of moisture in the air than to changes in precipitation.

Building Confidence in Hydrologic Models

Scientists evaluate seven hydrologic models to understand how each model agrees and differs.

New Research Shows Hydropower Dams Can Be Managed Without an All-or-Nothing Choice Between Energy and Food

Nearly 100 hydropower dams are planned for construction along tributaries off the Mekong River's 2,700-mile stretch. In Science Magazine, researchers present a mathematical formula to balance power generation needs with needs of fisheries downstream.

El Nino and Liquid Water Clouds Contribute to Antarctic Melt in 2015-2016

Atmospheric Radiation Measurement (ARM) observations provide clues on atmospheric contributions to an Antarctic melt event.

Designer Yeast Consumes Plant Matter and Spits Out Fatty Alcohols for Detergents and Biofuels

Highest concentration and yield of valuable chemicals reported in industrial yeast Saccharomyces cerevisiae.

Scientists Create Stretchable Battery Made Entirely Out of Fabric

A research team led by faculty at Binghamton University, State University of New York has developed an entirely textile-based, bacteria-powered bio-battery that could one day be integrated into wearable electronics.


  • Filters

  • × Clear Filters

WVU Physicists Among Collaborators Granted $7 Million to Form U.S. Department of Energy Center of Excellence

Scientists pause each afternoon at Kirtland Air Force Base in Sandia National Laboratories in Albuquerque, New Mexico, awaiting the daily lightning flash and unmistakable floor jolt that accompanies a Z shot

US Dept. Of Energy Grant to Advance Combined Heat and Power Systems in the Midwest

The University of Illinois at Chicago has received a five-year, $4.2 million grant from the U.S. Department of Energy to help industrial, commercial, institutional and utility entities evaluate and install highly efficient combined heat and power (CHP) technologies.CHP, also known as cogeneration, is a single system that produces both thermal energy and electricity.

Applications Open: ECS Toyota Young Investigator Fellowship 2018-2019

ECS, in a continued partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is requesting proposals from young professors and scholars pursuing innovative electrochemical research in green energy technology.

Successful Startup Founder to Lead Entrepreneurship Program at Argonne

John Carlisle has been named the director of Chain Reaction Innovations (CRI), a program aimed at accelerating job creation through innovation, based at the U.S. Department of Energy's Argonne National Laboratory.

Department of Energy Supports Argonne Nuclear Technologies

This fall, U.S. Department of Energy Secretary Rick Perry announced nearly $4.7 million in funding for the department's Argonne National Laboratory across 16 projects in three divisions. Four of those TCF awards, representing more than $1 million in funds, are slated for Argonne's Nuclear Engineering division.

Southern Research Develops Gasifier Technology to Unlock Coal's Potential

Southern Research has been selected to receive nearly $1.7 million in U.S. Department of Energy funding to develop a new, cost-efficient gasifier capable of converting low-grade coal into synthesis gas (syngas) that can be used in a number of applications.

CEBAF Begins Operations following Upgrade Completion

The world's most advanced particle accelerator for investigating the quark structure of matter is gearing up to begin its first experiments following official completion of an upgrade to triple its original design energy. The Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility is now back online and ramping up for the start of experiments.

Chory and Walter Awarded Breakthrough Prizes

HHMI Investigators Joanne Chory and Peter Walter are among five scientists honored for transformative advances toward understanding living systems and extending human life.

Shantenu Jha Named Chair of Brookhaven Lab's Center for Data-Driven Discovery

Jha--a computational scientist who holds a joint appointment as an associate professor at Rutgers University--will lead a center that provides the focal point for data science research and development.

Five Brookhaven Lab Scientists Named 2017 American Physical Society Fellows

Anatoly Frenkel, Morgan May, Rachid Nouicer, Eric Stach, and Peter Steinberg were recognized for their outstanding contributions to astrophysics, materials physics, and nuclear physics.


  • Filters

  • × Clear Filters

Underappreciated Microbes Now Get Credit for Holding Down Two Jobs in Soil

Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.

Energy, Economy, and the Earth: The Benefits of Creating Feedback Loops

Scientists reduce uncertainties in future climate prediction by directly coupling an energy-economy model to an Earth system model.

How Grasslands Regulate Their Productivity in Response to Droughts

Scientists show that grasslands are more sensitive to changes in the amount of moisture in the air than to changes in precipitation.

Building Confidence in Hydrologic Models

Scientists evaluate seven hydrologic models to understand how each model agrees and differs.

El Nino and Liquid Water Clouds Contribute to Antarctic Melt in 2015-2016

Atmospheric Radiation Measurement (ARM) observations provide clues on atmospheric contributions to an Antarctic melt event.

Designer Yeast Consumes Plant Matter and Spits Out Fatty Alcohols for Detergents and Biofuels

Highest concentration and yield of valuable chemicals reported in industrial yeast Saccharomyces cerevisiae.

Making Polymer Chemistry Click

Scientists unlock the key to efficiently make a new class of engineering polymers.

Photosynthesis without Cells: Turning Light into Fuel

An entirely human-made architecture produces hydrogen fuel using light, shows promise for transmitting energy in numerous applications.

Craters on Graphene: Electrons Impact

Novel defect control in graphene enables direct imaging of trapped electrons that follow Einstein's rules.

A Molecular Zipper for Efficient Gas Separation

Metal-organic frameworks with chains of iron centers adsorb and release carbon monoxide with very little energy input.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215