Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-11-21 09:05:00
  • Article ID: 685565

Designing New Metal Alloys Using Engineered Nanostructures

Stony Brook University assistant professor Jason Trelewicz brings his research to design and stabilize nanostructures in metals to Brookhaven Lab's Center for Functional Nanomaterials

  • Credit: Brookhaven National Laboratory

    Materials scientist Jason Trelewicz in an electron microscopy laboratory at Brookhaven's Center for Functional Nanomaterials, where he characterizes nanoscale structures in metals mixed with other elements.

  • Credit: ITER Organization

    A model of the ITER tokamak, an experimental machine designed to harness the energy of fusion. A powerful magnetic field is used to confine the plasma, which is held in a doughnut-shaped vessel.

  • Credit: Jason Trelewicz

    Jason Trelewicz (third from right) and his research group, which contains a mix of doctoral, master's, and undergraduate students.

  • Credit: Jason Trelewicz

    Trelewicz and his students irradiated a nanostructured tungsten-titanium alloy with high-energy gold ions to explore the radiation tolerance of this novel material.

  • Credit: Stony Brook University

    Jason Trelewicz (left) with Olivia Donaldson, who recently graduated with her PhD from Trelewicz's group, and Jonathan Gentile, a current doctoral student, in front of the scanning electron microscope/focused-ion beam at Stony Brook University's Advanced Energy Center.

  • Credit: Jason Trelewicz

    Trelewicz and his students perform large-scale atomistic simulations to explore the segregation of solute species to grain boundaries (GBs)—interfaces between grains—in nanostructured alloys, as shown here for an aluminum-magnesium (Al-Mg) system, and its implications for the governing deformation mechanisms. They are using the insights gained through these simulations to design lightweight alloys with theoretical strengths.

Materials science is a field that Jason Trelewicz has been interested in since he was a young child, when his father—an engineer—would bring him to work. In the materials lab at his father’s workplace, Trelewicz would use optical microscopes to zoom in on material surfaces, intrigued by all the distinct features he would see as light interacted with different samples.

Now, Trelewicz—an assistant professor in the College of Engineering and Applied Sciences’ Department of Materials Science and Chemical Engineering with a joint appointment in the Institute for Advanced Computational Science at Stony Brook University and principal investigator of the Engineered Metallic Nanostructures Laboratory—takes advantage of the much higher magnifications of electron microscopes to see tiny nanostructures in fine detail and learn what happens when they are exposed to heat, radiation, and mechanical forces. In particular, Trelewicz is interested in nanostructured metal alloys (metals mixed with other elements) that incorporate nanometer-sized features into classical materials to enhance their performance. The information collected from electron microscopy studies helps him understand interactions between structural and chemical features at the nanoscale. This understanding can then be employed to tune the properties of materials for use in everything from aerospace and automotive components to consumer electronics and nuclear reactors.

Since 2012, when he arrived at Stony Brook University, Trelewicz has been using the electron microscopes and the high-performance computing (HPC) cluster at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—to perform his research.

“At the time, I was looking for ways to apply my idea of stabilizing nanostructures in metals to an application-oriented problem,” said Trelewicz. “I’ve long been interested in nuclear energy technologies, initially reading about fusion in grade school. The idea of recreating the processes responsible for the energy we receive from the sun here on earth was captivating, and fueled my interest in nuclear energy throughout my entire academic career. Though we are still very far away from a fusion reactor that generates power, a large international team on a project under construction in France called ITER is working to demonstrate a prolonged fusion reaction at a large scale.”

Plasma-facing materials for fusion reactors

Nuclear fusion—the reaction in which atomic nuclei collide—could provide a nearly unlimited supply of safe, clean energy, like that naturally produced by the sun through fusing hydrogen nuclei into helium atoms. Harnessing this carbon-free energy in reactors requires generating and sustaining a plasma, an ionized gas, at the very high temperatures at which fusion occurs (about six times hotter than the sun’s core) while confining it using magnetic fields. Of the many challenges currently facing fusion reactor demonstrations, one of particular interest to Trelewicz is creating viable materials to build a reactor.

“The formidable materials challenges for fusion are where I saw an opportunity for my research—developing materials that can survive inside the fusion reactor, where the plasma will generate high heat fluxes, high thermal stresses, and high particle and neutron fluxes,” said Trelewicz. “The operational conditions in this environment are among the harshest in which one could expect a material to function.”

A primary candidate for such “plasma-facing material” is tungsten, because of its high melting point—the highest one among metals in pure form—and low sputtering yield (number of atoms ejected by energetic ions from the plasma). However, tungsten’s stability against recrystallization, oxidation resistance, long-term radiation tolerance, and mechanical performance are problematic. 

Trelewicz thinks that designing tungsten alloys with precisely tailored nanostructures could be a way to overcome these problems. In August, he received a $750,000 five-year award from the DOE’s Early Career Research Program to develop stable nanocrystalline tungsten alloys that can withstand the demanding environment of a fusion reactor. His research is combining simulations that model atomic interactions and experiments involving real-time ion irradiation exposure and mechanical testing to understand the fundamental mechanisms responsible for the alloys’ thermal stability, radiation tolerance and mechanical performance. The insights from this research will inform the design of more resilient alloys for fusion applications.

In addition to the computational resources they use at their home institution, Trelewicz and his lab group are using the HPC cluster at the CFN—and those at other DOE facilities, such as Titan at Oak Ridge Leadership Computing Facility (a DOE Office of Science User Facility at Oak Ridge National Laboratory)—to conduct large-scale atomistic simulations as part of the project.

“The length scales of the structures we want to design into our materials are on the order of a few nanometers to 100 nanometers, and a single simulation can involve up to 10 million atoms,” said Trelewicz. “Using HPC clusters, we can build a system atom-by-atom, representative of the structure we would like to explore experimentally, and run simulations to study the response of that system under various external stimuli. For example, we can fire a high-energy atom into the system and watch what happens to the material and how it evolves, hundreds or thousands of times. Once damage has accumulated in the structure, we can simulate thermal and mechanical forces to understand how defect structure impacts other behavior.”

These simulations inform the structures and chemistries of experimental alloys, which Trelewicz and his students fabricate at Stony Brook University through high-energy milling. To characterize the nanoscale structure and chemical distribution of the engineered alloys, they extensively use the microscopy facilities at the CFN—including scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes. Imaging is conducted at high resolution and often combined with heating within the microscope to examine in real time how the structures evolve with temperature. Experiments are also conducted at other DOE national labs, such as Sandia through collaboration with materials scientist Khalid Hattar of the Ion Beam Laboratory. Here, students in Trelewicz’s research group simultaneously irradiate the engineered alloys with an ion beam and image them with an electron microscope over the course of many days.

“Though this damage does not compare to what the material would experience in a reactor, it provides a starting point to evaluate whether or not the engineered material could indeed address some of the limitations of tungsten for fusion applications,” said Trelewicz.

Electron microscopy at the CFN has played a key role in an exciting discovery that Trelewicz’s students recently made: an unexpected metastable-to-stable phase transition in thin films of nanostructured tungsten. This phase transition drives an abnormal "grain” growth process in which some crystalline nanostructure features grow very dramatically at the expense of others. When the students added chromium and titanium to tungsten, this metastable phase was completely eliminated, in turn enhancing the thermal stability of the material.

“One of the great aspects of having both experimental and computational components to our research is that when we learn new things from our experiments, we can go back and tailor the simulations to more accurately reflect the actual materials,” said Trelewicz. 

Other projects in Trelewicz’s research group

The research with tungsten is only one of many projects ongoing in the Engineered Metallic Nanostructures Laboratory. 

“All of our projects fall under the umbrella of developing new metal alloys with enhanced and/or multifunctional properties,” said Trelewicz. “We are looking at different strategies to optimize material performance by collectively tailoring chemistry and microstructure in our materials. Much of the science lies in understanding the nanoscale mechanisms that govern the properties we measure at the macroscale.”

Through a National Science Foundation CAREER (Faculty Early Career Development Program) award, Trelewicz and his research group are exploring another class of high-strength alloys—amorphous metals, or “metallic glasses,” which are metals that have a disordered atomic structure akin to glass. Compared to everyday metals, metallic glasses are often inherently higher strength but usually very brittle, and it is difficult to make them in large parts such as bulk sheets. Trelewicz’s team is designing interfaces and engineering them into the metallic glasses—initially iron-based and later zirconium-based ones—to enhance the toughness of the materials, and exploring additive manufacturing processes to enable sheet-metal production. They will use the Nanofabrication Facility at the CFN to fabricate thin films of these interface-engineered metallic glasses for in situ analysis using electron microscopy techniques.

In a similar project, they are seeking to understand how introducing a crystalline phase into a zirconium-based amorphous alloy to form a metallic glass matrix composite (composed of both amorphous and crystalline phases) augments the deformation process relative to that of regular metallic glasses. Metallic glasses usually fail catastrophically because strain becomes localized into shear bands. Introducing crystalline regions in the metallic glasses could inhibit the process by which strain localizes in the material. They have already demonstrated that the presence of the crystalline phase fundamentally alters the mechanism through which the shear bands form.

Trelewicz and his group are also exploring the deformation behavior of metallic “nanolaminates” that consist of alternating crystalline and amorphous layers, and are trying to approach the theoretical limit of strength in lightweight aluminum alloys through synergistic chemical doping strategies (adding other elements to a material to change its properties).

“We leverage resources of the CFN for every project ongoing in my research group,” said Trelewicz. “We extensively use the electron microscopy facilities to look at material micro- and nanostructure, very often at how interfaces are coupled with compositional inhomogeneities—information that helps us stabilize and design interfacial networks in nanostructured metal alloys. Computational modeling and simulation enabled by the HPC clusters at the CFN informs what we do in our experiments.”

Beyond his work at CFN, Trelewicz collaborates with his departmental colleagues to characterize materials at the National Synchrotron Light Source II—another DOE Office of Science User Facility at Brookhaven. 

“There are various ways to characterize structural and chemical inhomogeneities,” said Trelewicz. “We look at small amounts of material through the electron microscopes at CFN and on more of a bulk level at NSLS-II through techniques such as x-ray diffraction and the micro/nano probe. We combine this local and global information to thoroughly characterize a material and use this information to optimize its properties.”

Future of next-generation materials

When he is not doing research, Trelewicz is typically busy with student outreach. He connects with the technology departments at various schools, providing them with materials engineering design projects. The students not only participate in the engineering aspects of materials design but are also trained on how to use 3D printers and other tools that are critical in today’s society to manufacture products more cost effectively and with better performance.

Going forward, Trelewicz would like to expand his collaborations at the CFN and help establish his research in metallic nanostructures as a core area supported by CFN and, ultimately, DOE, to achieve unprecedented properties in classical materials.

“Being able to learn something new every day, using that knowledge to have an impact on society, and seeing my students fill gaps in our current understanding are what make my career as a professor so rewarding,” said Trelewicz. “With the resources of Stony Brook University, nearby CFN, and other DOE labs, I have an amazing platform to make contributions to the field of materials science and metallurgy.”

Trelewicz holds a bachelor’s degree in engineering science from Stony Brook University and a doctorate in materials science and engineering with a concentration in technology innovation from MIT. Before returning to academia in 2012, Trelewicz spent four years in industry managing technology development and transition of harsh-environment sensors produced by additive manufacturing processes. He is the recipient of a 2017 Department of Energy Early Career Research Award, 2016 National Science Foundation CAREER award, and 2015 Young Leaders Professional Development Award from The Minerals, Metals & Materials Society (TMS), and is an active member of several professional organizations, including TMS, the Materials Research Society, and ASM International (the Materials Information Society).

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

X
X
X
  • Filters

  • × Clear Filters

A Game Changer: Protein Clustering Powered by Supercomputers

New algorithm lets biologists harness massively parallel supercomputers to make sense of a protein "data deluge."

LLNL Maps Out Deployment of Carbon Capture and Sequestration for Ethanol Production

To better understand the near-term commercial potential for capturing and storing atmospheric carbon dioxide (CO2), researchers from Lawrence Livermore National Laboratory have mapped out how CO2 might be captured from existing U.S. ethanol biorefineries and permanently stored (or sequestered) underground.

Neutrons Provide Insights into Increased Performance for Hybrid Perovskite Solar Cells

Neutron scattering at Oak Ridge National Laboratory has revealed, in real time, the fundamental mechanisms behind the conversion of sunlight into energy in hybrid perovskite materials. A better understanding of this behavior will enable manufacturers to design solar cells with significantly increased efficiency.

Liquid Cell Transmission Electron Microscopy Makes a Window Into the Nanoscale

From energy materials to disease diagnostics, new microscopy techniques can provide more nuanced insight. Researchers first need to understand the effects of radiation on samples, which is possible with a new device that holds tightly sealed liquid cell samples for transmission electron microscopy.

Nanoparticle Breakthrough Could Capture Unseen Light for Solar Energy Conversion

An international team, led by Berkeley Lab scientists, has demonstrated a breakthrough in the design and function of nanoparticles that could make solar panels more efficient by converting light usually missed by solar cells into usable energy.

New Testing of Model Improves Confidence in the Performance of ITER

Article describes effect of ion and electron heating on multiscale turbulence in fusion plasmas.

Study Recommends Strong Role for National Labs in 'Second Laser Revolution'

A new study calls for the U.S. to step up its laser R&D efforts to better compete with major overseas efforts to build large, high-power laser systems, and notes progress and milestones at the Department of Energy's Berkeley Lab Laser Accelerator (BELLA) Center and other sites.

Wood Formation Model To Fuel Progress in Bioenergy, Paper, New Applications

Need stronger timber, better biofuel or new sources of green chemicals? A systems biology model built on decades of NC State research will accelerate progress on engineering trees for specific needs.

Researchers Achieve HD Video Streaming at 10,000 Times Lower Power

Engineers at the University of Washington have developed a new HD video streaming method that doesn't need to be plugged in. Their prototype skips the power-hungry components and has something else, like a smartphone, process the video instead.

Lawrence Livermore Issues Combined State-by-State Energy and Water Use Flow Charts

For the first time, Lawrence Livermore National Laboratory (LLNL) has issued state-by-state energy and water flow charts in one location so that analysts and policymakers can find all the information they need in one place.


  • Filters

  • × Clear Filters

Five Leading Liberal Arts Colleges Partner to Create New Solar Energy Facility in Maine

Amherst, Bowdoin, Hampshire, Smith and Williams colleges have formed a partnership that will allow them to offset 46,000 megawatt hours per year of their collective electrical needs--enough to power 5,000 New England homes--with electricity created at a solar power facility to be built in Maine.

Argonne Selects Innovators From Across Nation to Grow Startups

Argonne announces second cohort of Chain Reaction Innovations.

Brookhaven Lab Materials Physicist Yimei Zhu Receives 2018 Distinguished Scientist Award from the Microscopy Society of America

How do complex atomic and electronic interactions impact material properties? Using electron microscopy instrumentation and methods he developed, Yimei Zhu has been investigating this question for the past 30 years. The Microscopy Society of America is now recognizing his contributions.

SLAC Produces First Electron Beam with Superconducting Electron Gun

Accelerator scientists at the Department of Energy's SLAC National Accelerator Laboratory are testing a new type of electron gun for a future generation of instruments that take snapshots of the atomic world in never-before-seen quality and detail, with applications in chemistry, biology, energy and materials science.

U.S., India Sign Agreement Providing for Neutrino Physics Collaboration at Fermilab and in India

Earlier today, April 16, 2018, U.S. Secretary of Energy Rick Perry and India's Atomic Energy Secretary Dr. Sekhar Basu signed an agreement in New Delhi to expand the two countries' collaboration on world-leading science and technology projects. It opens the way for jointly advancing cutting-edge neutrino science projects under way in both countries: the Long-Baseline Neutrino Facility (LBNF) with the international Deep Underground Neutrino Experiment (DUNE) hosted at the U.S. Department of Energy's Fermilab and the India-based Neutrino Observatory (INO).

Nanomaterials Expert Ganpati Ramanath Named Fellow of Materials Research Society

Nanomaterials expert Ganpati Ramanath, the John Tod Horton '52 Professor of Materials Science and Engineering at Rensselaer Polytechnic Institute, has been named a fellow of the Materials Research Society (MRS) "for developing creative approaches to realize new nanomaterials via chemically directed nanostructure synthesis and assembly and for tailoring interfaces in electronics and energy applications using molecular nanolayers."

Doing the Neutron Dance

Two materials scientists, Suzanne te Velthuis and Stephan Rosenkranz, have been named fellows of the Neutron Scattering Society of America (NSSA).

Hirohisa Tanaka Joins SLAC to Push Limits of Neutrino Physics

Accomplished neutrino physicist Hirohisa Tanaka has joined the Department of Energy's SLAC National Accelerator Laboratory as a professor of particle physics and astrophysics. He oversees a group at the lab that is preparing for research with the future Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF). The experiment will give scientists unprecedented opportunities to learn more about neutrinos - fundamental particles with mysterious properties that could play crucial roles in the evolution of the universe.

University Teams to Compete in Department of Energy's 2018 National Cyber Defense Competition

The U.S. Department of Energy is proud to announce the 29 university teams selected to compete in the third annual Cyber Defense Competition (CDC), taking place April 6-7, 2018.


  • Filters

  • × Clear Filters

A Game Changer: Protein Clustering Powered by Supercomputers

New algorithm lets biologists harness massively parallel supercomputers to make sense of a protein "data deluge."

Getting Magnesium Ions to Pick Up the Pace

Magnesium ions move very fast to enable a new class of battery materials.

Seeing How Next-Generation Batteries Power-Up

Scientists directly see how the atoms in a magnesium-based battery fit into the structure of electrodes.

Worm-Inspired Tough Materials

Scientists mimic a worm's lethal jaw to design and form resilient materials.

How to Turn Light Into Atomic Vibrations

Converting laser light into nuclear vibrations is key to switching a material's properties on and off for future electronics.

Superacids Are Good Medicine for Super Thin Semiconductors

Scientists demonstrated that powerful acids heal certain structural defects in synthetic films.

Tubular Science Improves Polymer Solar Cells

Novel engineered polymers assemble buckyballs into columns using a conventional coating process.

Fast! Hard X-Ray Flash Breaks Speed Record

Lasting just a few hundred billionths of a billionth of a second, these bursts offer new tool to study chemistry and magnetism.

Scientists Have Overestimated Meteor Sizes

First demonstration of high-pressure metastability mapping with ultrafast X-ray diffraction shows objects aren't as large as previously thought.

Rewriting Resistance: Genetic Changes Increase Crops' Biomass and Sugar Release

Using genetic engineering, scientists improve biomass growth and conversion in woody and grassy feedstocks.


Spotlight

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University





Showing results

0-4 Of 2215