DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-01-23 03:00:06
    • Article ID: 688231

    It All Starts With a 'Spark': Berkeley Lab Delivers Injector That Will Drive X-ray Laser Upgrade

    Unique device will create bunches of electrons to stimulate million-per-second X-ray pulses

    • Credit: Marilyn Chung/Berkeley Lab

      Joe Wallig, left, a mechanical engineering associate, and Brian Reynolds, a mechanical technician, work on the final assembly of the LCLS-II injector gun in a specially designed clean room at Berkeley Lab in August.

    • Credit: Marilyn Chung/Berkeley Lab

      Joe Wallig, a mechanical engineering associate, prepares a metal ring component of the injector gun for installation using a jet of high-purity dry ice in a clean room.

    • Credit: Greg Stewart/SLAC National Accelerator Laboratory

      A rendering of the completed injector gun and related beam line equipment.

    • Credit: Marilyn Chung/Berkeley Lab

      Krista Williams, a mechanical technician, works on the final assembly of LCLS-II injector components on Jan. 11.

    • Credit: Marilyn Chung/Berkeley Lab

      Members of the LCLS-II injector gun team at Berkeley Lab.

    Every powerful X-ray pulse produced for experiments at a next-generation laser project, now under construction, will start with a “spark” – a burst of electrons emitted when a pulse of ultraviolet light strikes a 1-millimeter-wide spot on a specially coated surface.

    A team at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) designed and built a unique version of a device, called an injector gun, that can produce a steady stream of these electron bunches that will ultimately be used to produce brilliant X-ray laser pulses at a rapid-fire rate of up to 1 million per second.

    The injector arrived Jan. 22 at SLAC National Accelerator Laboratory (SLAC) in Menlo Park, California, the site of the Linac Coherent Light Source II (LCLS-II), an X-ray free-electron laser project.

    Getting up to speed

    The injector will be one of the first operating pieces of the new X-ray laser. Initial testing of the injector will begin shortly after its installation.

    The injector will feed electron bunches into a superconducting particle accelerator that must be supercooled to extremely low temperatures to conduct electricity with nearly zero loss. The accelerated electron bunches will then be used to produce X-ray laser pulses.

    Scientists will employ the X-ray pulses to explore the interaction of light and matter in new ways, producing sequences of snapshots that can create atomic- and molecular-scale “movies,” for example, to illuminate chemical changes, magnetic effects, and other phenomena that occur in just quadrillionths (million-billionths) of a second.

    This new laser will complement experiments at SLAC’s existing X-ray laser, which launched in 2009 and fires up to 120 X-ray pulses per second. That laser will also be upgraded as a part of the LCLS-II project.

    The injector gun project teamed scientists from Berkeley Lab’s Accelerator Technology and Applied Physics Division with engineers and technologists from the Engineering Division in what Engineering Division Director Henrik von der Lippe described as “yet another success story from our longstanding partnership – (this was) a very challenging device to design and build.”

    “The completion of the LCLS-II injector project is the culmination of more than three years of effort,” added Steve Virostek, a Berkeley Lab senior engineer who led the gun construction. The Berkeley Lab team included mechanical engineers, physicists, radio-frequency engineers, mechanical designers, fabrication shop personnel, and assembly technicians.

    “Virtually everyone in the Lab’s main fabrication shop made vital contributions,” he added, in the areas of machining, welding, brazing, ultrahigh-vacuum cleaning, and precision measurements.

    The injector source is one of Berkeley Lab’s major contributions to the LCLS-II project, and builds upon its expertise in similar electron gun designs, including the completion of a prototype gun. Almost a decade ago, Berkeley Lab researchers began building a prototype for the injector system in a beam-testing area at the Lab’s Advanced Light Source.

    That successful effort, dubbed APEX (Advanced Photoinjector Experiment), produced a working injector that has since been repurposed for experiments that use its electron beam to study ultrafast processes at the atomic scale. Fernando Sannibale, Head of Accelerator Physics at the ALS, led the development of the prototype injector gun.

    “This is a ringing affirmation of the importance of basic technology R&D,” said Wim Leemans, director of Berkeley Lab’s Accelerator Technology and Applied Physics Division. “We knew that the users at next-generation light sources would need photon beams with exquisite characteristics, which led to highly demanding electron-beam requirements. As LCLS-II was being defined, we had an excellent team already working on a source that could meet those requirements.”

    The lessons learned with APEX inspired several design changes that are incorporated in the LCLS-II injector, such as an improved cooling system to prevent overheating and metal deformations, as well as innovative cleaning processes.

    “We’re looking forward to continued collaboration with Berkeley Lab during commissioning of the gun,” said SLAC’s John Galayda, LCLS-II project director. “Though I am sure we will learn a lot during its first operation at SLAC, Berkeley Lab’s operating experience with APEX has put LCLS-II miles ahead on its way to achieving its performance and reliability objectives.”

    Mike Dunne, LCLS director at SLAC, added, “The performance of the injector gun is a critical component that drives the overall operation of our X-ray laser facility, so we greatly look forward to seeing this system in operation at SLAC. The leap from 120 pulses per second to 1 million per second will be truly transformational for our science program.”

    How it works

    Like a battery, the injector has components called an anode and cathode. These components form a vacuum-sealed central copper chamber known as a radio-frequency accelerating cavity that sends out the electron bunches in a carefully controlled way.

    The cavity is precisely tuned to operate at very high frequencies and is ringed with an array of channels that allow it to be water-cooled, preventing overheating from the radio-frequency currents interacting with copper in the injector’s central cavity.

    A copper cone structure within its central cavity is tipped with a specially coated and polished slug of molybdenum known as a photocathode. Light from an infrared laser is converted to an ultraviolet (UV) frequency laser, and this UV light is steered by mirrors onto a small spot on the cathode that is coated with cesium telluride (Cs2Te), exciting the electrons.

    These electrons are are formed into bunches and accelerated by the cavity, which will, in turn, connect to the superconducting accelerator. After this electron beam is accelerated to nearly the speed of light, it will be wiggled within a series of powerful magnetic structures called undulator segments, stimulating the electrons to emit X-ray light that is delivered to experiments.

    Precision engineering and spotless cleaning

    Besides the precision engineering that was essential for the injector, Berkeley Lab researchers also developed processes for eliminating contaminants from components through a painstaking polishing process and by blasting them with dry ice pellets.

    The final cleaning and assembly of the injector’s most critical components was performed in filtered-air clean rooms by employees wearing full-body protective clothing to further reduce contaminants – the highest-purity clean room used in the final assembly is actually housed within a larger clean room at Berkeley Lab.

    “The superconducting linear accelerator is extremely sensitive to particulates,” such as dust and other types of tiny particles, Virostek said. “Its accelerating cells can become non-usable, so we had to go through quite a few iterations of planning to clean and assemble our system with as few particulates as possible.”

    The dry ice-based cleaning processes function like sandblasting, creating tiny explosions that cleanse the surface of components by ejecting contaminants. In one form of this cleaning process, Berkeley Lab technicians enlisted a specialized nozzle to jet a very thin stream of high-purity dry ice.

    After assembly, the injector was vacuum-sealed and filled with nitrogen gas to stabilize it for shipment. The injector’s cathodes degrade over time, and the injector is equipped with a “suitcase” of cathodes, also under vacuum, that allows cathodes to be swapped out without the need to open up the device.

    “Every time you open it up you risk contamination,” Virostek explained. Once all of the cathodes in a suitcase are used up, the suitcase must be replaced with a fresh set of cathodes.

    The overall operation and tuning of the injector gun will be remotely controlled, and there is a variety of diagnostic equipment built into the injector to help ensure smooth running.

    Even before the new injector is installed, Berkeley Lab has proposed to undertake a design study for a new injector that could generate electron bunches with more than double the output energy. This would enable higher-resolution X-ray-based images for certain types of experiments.

    Berkeley Lab Contributions to LCLS-II

    John Corlett, Berkeley Lab’s senior team leader, worked closely with the LCLS-II project managers at SLAC and with Berkeley Lab managers to bring the injector project to fruition.

    “In addition to the injector source, Berkeley Lab is also responsible for the undulator segments for both of the LCLS-II X-ray free-electron laser beamlines, for the accelerator physics modeling that will optimize their performance, and for technical leadership in the low-level radio-frequency controls systems that stabilize the superconducting linear accelerator fields,” Corlett noted.

    James Symons, Berkeley Lab’s associate director for physical sciences, said, “The LCLS-II project has provided a tremendous example of how multiple laboratories can bring together their complementary strengths to benefit the broader scientific community. The capabilities of LCLS-II will lead to transformational understanding of chemical reactions, and I’m proud of our ability to contribute to this important national project.”

    LCLS-II is being built at SLAC with major technical contributions from Argonne National Laboratory, Fermilab, Jefferson Lab, Berkeley Lab, and Cornell University. Construction of LCLS-II is supported by DOE’s Office of Science.

    ###

    Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    ORNL scientists make fundamental discovery to creating better crops

    ORNL scientists make fundamental discovery to creating better crops

    A team of scientists led by Oak Ridge National Laboratory have discovered the specific gene that controls an important symbiotic relationship between plants and soil fungi, and successfully facilitated the symbiosis in a plant that typically resists it.

    New Laws of Attraction: Scientists Print Magnetic Liquid Droplets

    New Laws of Attraction: Scientists Print Magnetic Liquid Droplets

    Scientists at Berkeley Lab have 3D-printed a magnetic device out of liquids. Their findings could lead to printable liquid magnetic devices for a variety of applications such as artificial cells that deliver targeted cancer therapies to flexible liquid robots.

    A sharper focus: New computational technique resolves compressed X-ray data

    A sharper focus: New computational technique resolves compressed X-ray data

    With high-energy X-rays, such as those that will be produced by the upgrade to Argonne's Advanced Photon Source comes a potential hitch -- the more penetrating the X-rays are, the higher a likelihood that researchers could run into problems with the image data. In a new study, researchers at Argonne have found a novel way to combat this image degradation.

    A Graphene Superconductor That Plays More Than One Tune

    A Graphene Superconductor That Plays More Than One Tune

    Researchers at Berkeley Lab have developed a graphene device that switches from a superconducting material that conducts electricity without losing any energy, to an insulator that resists the flow of electric current - all with a simple flip of a switch.

    After blasting a molecule with light, researchers watch its structure vibrate and change in real time

    After blasting a molecule with light, researchers watch its structure vibrate and change in real time

    A new study describes how a team of researchers watched a molecule vibrate after they excited it with ultraviolet light.

    Scientists deepen understanding of the magnetic fields that surround the Earth and other planets

    Scientists deepen understanding of the magnetic fields that surround the Earth and other planets

    Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.

    Light dark matter is a thousand times less likely to bump into regular matter than previous astrophysical analyses allowed

    Light dark matter is a thousand times less likely to bump into regular matter than previous astrophysical analyses allowed

    A team led by scientists from the Department of Energy's SLAC National Accelerator Laboratory and Stanford University has narrowed down how strongly dark matter particles might interact with normal matter. Based on the number and distribution of small satellite galaxies seen orbiting our Milky Way, the team found this interaction to be at least a thousand times weaker than the strongest interaction allowed by previous astrophysical analyses.

    New Sensor Could Shake Up Earthquake Response Efforts

    New Sensor Could Shake Up Earthquake Response Efforts

    An optical sensor developed at Berkeley Lab could speed up the time it takes to evaluate whether buildings are safe to occupy after a major earthquake. After four years of extensive peer-reviewed research and simulative testing at the University of Nevada's Earthquake Engineering Laboratory, the Discrete Diode Position Sensor (DDPS) will be deployed for the first time this summer in a multi-story building at Berkeley Lab - which sits adjacent to the Hayward Fault, considered one of the most dangerous faults in the United States.

    The best of both worlds: how to solve real problems on modern quantum computers

    The best of both worlds: how to solve real problems on modern quantum computers

    Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and Los Alamos National Laboratory, along with researchers at Clemson University and Fujitsu Laboratories of America, have developed hybrid algorithms to run on size-limited quantum machines and have demonstrated them for practical applications.

    Designer proteins form wires and lattices on mineral surface

    Designer proteins form wires and lattices on mineral surface

    This research is a fundamental discovery of how to engineer proteins onto non-biological surfaces. Artificial proteins engineered from scratch have been assembled into nanorod arrays, designer filaments and honeycomb lattices on the surface of mica, demonstrating control over the way proteins interact with surfaces to form complex structures previously seen only in natural protein systems. The study provides a foundation for understanding how protein-crystal interactions can be systematically programmed and sets the stage for designing novel protein-inorganic hybrid materials.


    • Filters

    • × Clear Filters
    Physicist Rajesh Maingi heads nationwide liquid metal strategy program for fusion devices

    Physicist Rajesh Maingi heads nationwide liquid metal strategy program for fusion devices

    PPPL physicist Rajesh Maingi co-leads national program to develop strategy for use of flowing liquid lithium in fusion devices.

    Department of Energy awards $4.6 million to Argonne to support collaborations with industry

    Department of Energy awards $4.6 million to Argonne to support collaborations with industry

    The U.S. Department of Energy (DOE) recently announced more than $24 million in funding for 77 projects aimed at advancing commercialization of promising energy technologies and strengthening partnerships between DOE's National Laboratories and private-sector companies to deploy important technologies to the marketplace. DOE's Argonne National Laboratory received $4.6 million to fund 12 projects across four research divisions.

    SLAC makes 'electron camera,' a world-class tool for ultrafast science, available to scientists worldwide

    SLAC makes 'electron camera,' a world-class tool for ultrafast science, available to scientists worldwide

    Over the past few years, the Department of Energy's SLAC National Accelerator Laboratory has developed a new tool to visualize physical and chemical processes with outstanding clarity: an ultra-high-speed "electron camera" capable of tracking atomic motions in a broad range of materials in real time. Starting this week, the lab has made this tool available to researchers worldwide.

    Berkeley Lab Scientists Earn Prestigious White House Early Career Award

    Berkeley Lab Scientists Earn Prestigious White House Early Career Award

    Two scientists with Berkeley Lab - and two faculty scientists jointly affiliated with Berkeley Lab and the University of California, Berkeley - are among 315 researchers named on July 2 by President Trump to receive the prestigious Presidential Early Career Award for Scientists and Engineers.

    Caltech's Castaneda Named Director of Human Resources at PNNL

    Caltech's Castaneda Named Director of Human Resources at PNNL

    April Castaneda, a senior executive with 20 years of experience leading human resources programs at Caltech and NASA's Jet propulsion Laboratory, has been named director of Human Resources at Pacific Northwest National Laboratory.

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Jefferson Sciences Associates has announced the award of nine graduate fellowships to doctoral students for the 2019-2020 academic year.

    Argonne's Jim Morman Elected Fellow of American Nuclear Society

    Argonne's Jim Morman Elected Fellow of American Nuclear Society

    Jim Morman from the U.S. Department of Energy's (DOE) Argonne National Laboratory has been elected a fellow of the American Nuclear Society (ANS), the highest grade of membership that the society offers.

    Will Fox wins 2019 Thomas H. Stix Award for early career contributions to plasma physics

    Will Fox wins 2019 Thomas H. Stix Award for early career contributions to plasma physics

    PPPL physicist brings astrophysical processes down to Earth

    U.S. Department of Energy Renews Midwest Integrated Center for Computational Materials

    U.S. Department of Energy Renews Midwest Integrated Center for Computational Materials

    The Department of Energy has announced that, over the next four years, it will invest $32 million to accelerate the design of new materials through use of high-performance computing. One of the seven funded projects is the Midwest Integrated Center for Computational Materials (MICCoM), founded in 2015 and led by the Materials Science Division at the U.S. Department of Energy's (DOE) Argonne National Laboratory. This center draws co-investigators from the University of Chicago, University of Notre Dame, and University of California, Davis.


    • Filters

    • × Clear Filters
    Bursts of Light Shape Walls Between Waves of Charge

    Bursts of Light Shape Walls Between Waves of Charge

    To better store data, scientists need ways to change a material's properties suddenly. For example, they want a material that can go from insulator to conductor and back again. Now, they devised a surprisingly simple way of flipping a material from one state into another, and back again, with flashes of light. A single light pulse turns thin sheets of tantalum disulfide from its original (alpha) state into a mixture of alpha and beta states. Domain walls separate the two states. A second pulse of light dissolves the walls, and the material returns to its original state.

    Deep Learning Reveals Mysteries of Deep Space

    Deep Learning Reveals Mysteries of Deep Space

    How do you determine the measurable "things" that describe the nature of our universe? To answer that question, researchers used CosmoFlow, a deep learning technique, running on a National Energy Research Scientific Computing Center supercomputer. They analyzed large, complex data sets from 3-D simulations of the distribution of matter to answer that question. The team showed that CosmoFlow offers a new platform to gain a deeper understanding of the universe.

    At DOE's Manufacturing Demonstration Facility, science drives next-gen creations

    At DOE's Manufacturing Demonstration Facility, science drives next-gen creations

    American ingenuity is providing radical productivity improvements from advanced materials and robotic systems developed at the Department of Energy's Manufacturing Demonstration Facility at Oak Ridge National Laboratory.

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    Engineers can model heat distribution in reactor designs with fewer or no approximations.

    Tiny Vortices Could One Day Haul Microscopic Cargo

    Tiny Vortices Could One Day Haul Microscopic Cargo

    The behavior of active magnetic liquids suggests new pathways to transport particles across surfaces and build materials that self-heal.

    How Does Mother Nature Tackle the Tough Triple Bond Found in Nitrogen?

    How Does Mother Nature Tackle the Tough Triple Bond Found in Nitrogen?

    Researchers demystify how the nitrogenase enzyme breaks bonds to learn a better way to make ammonia.

    A Detailed View of the Ancestor of Photosynthesis

    A Detailed View of the Ancestor of Photosynthesis

    The symmetrical light-gathering, energy-producing complex offers insights into how modern photosystems evolved.

    Unique Interface and Unexpected Behavior Help Explain How Heavy Metals Act

    Unique Interface and Unexpected Behavior Help Explain How Heavy Metals Act

    Three types of water molecules form around a platinum-based ion, offering insights for waste processing and metal refining.

    Maximizing Ozone Signals

    Maximizing Ozone Signals

    New technique enables more efficient and precise estimates of trends in ozone and other atmospheric constituents within selected geographical regions and timeframes.

    How Much Water Does the World Use?

    How Much Water Does the World Use?

    Global data set shows monthly water use by irrigation, manufacturing, and other uses, helping researchers to analyze water use by region and season.


    Spotlight

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom
    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    The Future of Today's Electric Power Systems
    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Supporting the Development of Offshore Wind Power Plants
    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Stairway to Science
    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    After-School Energy Rush
    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory





    Showing results

    0-4 Of 2215