Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-01-30 00:00:44
  • Article ID: 688640

Berkeley Lab Researchers Contribute to Making Blockchains Even More Robust

Hyperledger Iroha project notes that this work heavily inspired their protocol

  • Credit: Marilyn Chung, Berkeley Lab

    Sean Peisert (left) and Hein Meling (right) at Berkeley Lab.

Blockchain—a technology used for verifying and recording digital transactions—blasted into public consciousness with the rise of Bitcoin. But this tool could also transform the way governments, global industries and even science research operate. In fact, several banks, corporations, governments and scientists have already implemented some form of blockchain to inexpensively, securely and expediently store and share information.

In the last few years, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab), University of California at Davis (UC Davis) and University of Stavanger in Norway have developed a new protocol, called BChain, which makes blockchain even more robust. A paper describing BChain was published in the Proceedings of the 18th International Conference on Principles of Distributed Systems.  The researchers are also working with colleagues at Berkeley Lab and beyond to adapt this tool to support applications that are of strategic importance to the Department of Energy’s (DOE) Office of Science. 

So what is a blockchain? It is essentially a fault-tolerant, decentralized collection of records, or blocks, that are connected and secured by cryptography. Instead of one organization managing all of this information, blockchains store data via a network of personal computers. Each block contains a timestamp and a link to a previous block, which forms a chronological chain. In the case of Bitcoin, whenever a new block is added to the chain, computers will automatically verify whether the previous transactions actually occurred, down to the original block. Any new block that looks different from the other, potentially created by someone aiming to cheat the system, is thrown out. And while users can see and add information to the blocks, they cannot modify the information that’s already there, which ensures transparency.

In most cases, blockchains rely on Byzantine fault-tolerant strategies to protect it from arbitrary failures. This is typically achieved through replicating servers and a replication protocol that requires all commands to be ordered before they are processed. Because all servers running the protocol must agree on the order of commands, this protocol is often referred to as a “consensus protocol,” and it generally comes in two forms. The classical approach uses “broadcasting” where a server sends messages to all of its replicas; the other approach is “chain replication” where servers send messages to each other along a chain, similar to a game of telephone.  

“Chain replication is a viable security solution as long as you can trust the leader—the server at the head of the chain—to behave correctly. However, if the leader cannot be trusted, all kinds of bad things can happen. The leader can delay or drop messages at will, leading to poor throughput, or it can send different messages to different servers, leading to inconsistent data on the different servers,” says Sean Peisert, a Berkeley Lab computer scientist, an adjunct associate professor at UC Davis and one of the paper’s co-authors.

 “The main novelty of our BChain protocol was to significantly reduce the impact that a misbehaving server, especially the leader, can have on the system. This was accomplished by making the other servers in the chain monitor each other, and if misbehavior is detected, the suspected server can be moved to the end of the chain, where it won’t have any impact,” he adds.

Unlike the public blockchain employed by Bitcoin transactions, BChain is a private blockchain. The main difference between the two is who can participate. Anyone can join a public blockchain, whereas a private blockchain requires an invitation to join and validation by either the network starter or a set of rules put in place by the originator. 

One main disadvantage to a public blockchain is the substantial amount of computational resources required to verify and record transactions at a large scale.  To achieve a consensus, each node on the network must solve a complex, computationally expensive, cryptographic problem, called proof of work, to ensure that everyone is in sync. Additionally, all transactions are recorded on a public ledger. 

In contrast, a private blockchain essentially leverages the same tamper-resistance and Byzantine fault-tolerant properties of the public chain without requiring the brute-force solving of a computationally hard problem each time new data is added because the ability to write to the blockchain is based on pre-determined access control permissions. More importantly, transaction records are only available to a small group of invited members, which is why financial and medical industries, as well as science research, tend to favor the private blockchain.   

“A private blockchain represents a more suitable approach for tracking data integrity over time,” says Hein Meling, a computer science professor at the University of Stavanger and co-author of the paper. “This can apply to the integrity of raw data or the integrity of events such as a record of who viewed or modified the data. In the case of science research, this tracking can be extremely valuable for reproducibility and transparency.”

 Since the first blockchain was conceptualized in 2009, primarily to power Bitcoin, Meling notes that that numerous other applications have been inspired by its potential. In fact, the Linux Foundation is currently hosting an open-source collaboration called Hyperledger to develop blockchain technologies that will be useful for a variety of applications in healthcare, finance, supply chain and science research, among others. One of the Hyperledger’s private blockchain offerings—a tool called Hyperledger Iroha—utilizes BChain’s fault tolerant consensus algorithm in its underlying protocol. The Iroha team details the BChain connection in its development documents.

“While blockchain technologies have received considerable attention, considerable promise remains. And the contributions of Berkeley Lab researchers continue to pave the way to help enable the full potential of this technology,” says Peisert.

He notes that researchers at Berkeley Lab are currently exploring applications for blockchain areas that are strategically important for DOE, like tracking data used in scientific research, or tracking energy generation and consumption on the U.S. power grid. 

“As more and more people install rooftop solar panels on their homes and businesses, we will need to have a provable mechanism to track how much energy people are generating and consuming so that nobody can lie about their use. Blockchain could be a part of a solution for this problem,” adds Peisert who is working with researchers in Berkeley Lab’s Computational Research Division to explore this possibility.

In addition to Peisert and Meling, two former UC Davis graduate students Sisi Duan and Haibin Zhang also contributed to the development of BChain. Both are now faculty members at the University of Maryland, Baltimore County. In addition to his roles at Berkeley Lab and UC Davis, Peisert is also director of the CENIC/ESnet Joint Cybersecurity Initiative.

BChain was developed with funding from the National Science Foundation and the Research Council of Norway. 

X
X
X
  • Filters

  • × Clear Filters

How a Molecular Signal Helps Plant Cells Decide When to Make Oil

Scientists identify new details of how a sugar-signaling molecule helps regulate oil production in plant cells. The work could point to new ways to engineer plants to produce substantial amounts of oil for use as biofuels or in the production of other oil-based products.

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.


  • Filters

  • × Clear Filters

Berkeley Lab to Build an Advanced Quantum Computing Testbed

Lawrence Berkeley National Laboratory (Berkeley Lab) will receive $30 million over five years from the U.S. Department of Energy to build and operate an Advanced Quantum Testbed (AQT) allowing researchers to explore superconducting quantum processors to advance scientific research

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility





Showing results

0-4 Of 2215