Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-02-08 11:05:17
  • Article ID: 689242

Particle Interactions Calculated on Titan Support the Search for New Physics Discoveries

MIT researchers and collaborators model fundamental processes related to the Sun's energy production and the search for a neutrino antiparticle.

  • Credit: Image courtesy of William Detmold

    A conceptual illustration of proton-proton fusion in which two protons fuse to form a deuteron.

Nuclear physicists are using the nation’s most powerful supercomputer, Titan, at the Oak Ridge Leadership Computing Facility (OLCF) to study particle interactions important to energy production in the Sun and stars and to propel the search for new physics discoveries. OLCF is a US Department of Energy (DOE) Office of Science User Facility located at DOE’s Oak Ridge National Laboratory.

Direct calculations of these nuclear processes can contribute new and fundamental information to the fields of high-energy physics, nuclear science, and astrophysics, including how matter formed in the early universe and its relation to dark matter and the large-scale structure of the universe.

The research team using Titan, including principal investigator William Detmold of the Massachusetts Institute of Technology (MIT), is calculating proton-proton fusion—a process that powers the Sun and other stars in which two protons fuse to form a deuteron—and double beta decay, a rare process which occurs when an unstable nucleus decays by emitting two electrons with or without neutrinos (subatomic particles with near-zero mass).

Although double beta decay with neutrinos has been observed in experiment, the team is focused on neutrinoless double beta decay—a type of double beta decay predicted by theory in which no neutrinos are emitted, only electrons. Yet to be observed, this neutrinoless process is of great interest to physicists because it could lead to new discoveries beyond the current model of particle physics known as the Standard Model.

The Standard Model, a description of all the known subatomic particles and fundamental forces in the universe except for gravity, has held up in experiments time and again. However, the Standard Model is not complete because it cannot fully explain what scientists observe at the cosmic scale.

Based on observations of galaxies, supernova, and other phenomena, researchers estimate that the universe consists of very little ordinary matter (only about 5 percent) and is mostly unseen dark matter that exerts a gravitational pull on ordinary matter (about 25 percent) and dark energy (about 70 percent). Yet scientists do not know what makes up dark matter or in what ways it may interact with ordinary matter other than gravitationally.

To help answer these and other cosmic questions, experiments are being built around the world to probe particle interactions at new scales and energies, and supercomputers are being used to simulate rare or theoretical interactions. By modeling the interactions of simple nuclei, physicists can understand the kind of experiments they need to build and what they may expect from experimental data.

On Titan, Detmold’s team used complex lattice quantum chromodynamics (QCD) calculations to predict the reaction rate—the probability that nuclear fusion or decay will occur—of proton-proton fusion and an important part of the theoretical rate of neutrinoless double beta decay.

“We’re showing that you can see the bound states of nuclei using quantum chromodynamics,” Detmold said. “From there, we’re calculating the simplest nuclear processes that happen.”

Modeling space-time

Nuclear fusion of hydrogen—the lightest element consisting only of a proton and electron—powers stars for millions to billions of years. Detmold’s team calculated the proton-proton fusion cross section on supercomputers because this interaction plays a critical role in solar energy production.

“We can’t experimentally probe proton-proton fusion that well,” Detmold said. “Even if you take a proton target and irradiate it with a beam of protons, the protons will just scatter, not fuse, so this fusion process is very rare in the laboratory.”

In this process, two protons overcome their electromagnetic repulsion between like charges and interact through the short-range, subatomic force known as the weak force.

Lattice QCD calculations represent how the fundamental particles that make up protons—quarks and gluons—interact in the volume of space-time in which proton-proton fusion occurs. Quarks are the smallest known constituents of matter, and gluons are the force-carrying particles that bind them. Named for the 4D grid (the lattice) that represents space-time and the unique “color charge” (chromo), which refers to how quarks and gluons combine rather than to actual colors, lattice QCD calculations are intensive computations that can require supercomputing power.

Efficiently using Titan’s GPU-accelerated architecture, Detmold’s team used the Chroma lattice QCD library (developed primarily by Robert Edwards and Balint Joò of Thomas Jefferson National Accelerator Facility) with a new algorithm to include weak interactions important to proton-proton fusion and QUDA, a lattice QCD library for GPUs (developed primarily by Kate Clark of NVIDIA). The calculations generated more than 1,000 snapshots of the 4D lattice with 10 million points of calculation per snapshot.

“These are the first QCD calculations of the proton-proton fusion rate,” Detmold said.

Researchers used the same lattice QCD algorithms to calculate another weak interaction process, tritium beta decay, which has been studied experimentally and was used to verify the calculations.

Narrowing the search

Researchers also calculated subprocesses that contribute to double beta decay rates, including theoretical rates for neutrinoless double beta decay.

A rare particle event, double beta decay was first predicted in 1935 but not observed in experiments until the 1980s. This type of decay can occur naturally when two neutrons decay into two protons inside a nucleus, emitting two electrons and two neutrinos in the process. Although rare, double beta decay occurs in some isotopes of heavy elements as a way for the nucleus to stabilize its number of protons and neutrons.

Neutrinoless double beta decay, also predicted over half a century ago, has never been observed. However, this potential process has gained much more significance in recent years since physicists discovered that neutrinos have a small mass. Because the neutrino has a neutral charge, it is theoretically possible that it is its own antiparticle—a particle of the same mass but opposite charge. Antiparticles exist in nature and have been created and observed in experiment, but matter particles are much more dominant in nature.

A particle that is its own antiparticle, known as a Majorana particle, could help explain the mechanism by which matter took precedence over antimatter in the universe, which is one of the great outstanding questions in cosmology.

Many experiments across the globe are trying to observe neutrinoless double beta decay, which would confirm the existence of a Majorana neutrino. Such a discovery would, for the first time, provide an unambiguous signature of the violation of lepton number conservation—the principle that describes balance between certain types of matter particles and their antiparticles.

Experiments such as the MAJORANA Demonstrator at the Sanford Underground Research Facility cool heavy elements in underground laboratories to temperatures colder than empty space. In their remote locations with heavy shielding, neutrino detectors like the MAJORANA Demonstrator are enabling scientists to narrow their search for rare neutrino interactions.

Because neutrinoless double beta decay is theoretical and, if real, still very rare, researchers must make extremely refined predictions of its reaction rate. The smaller the reaction rate, the less likely experiments will be able to capture the process and the bigger the experimental detector needs to be. The Titan calculations help researchers understand potential decay rates.

“Ultimately, what we are trying to determine is how likely an experiment of a given size is going to be able to see this process, so we need to know the reaction rate,” Detmold said.

Current neutrino experiments are pilot scale, using tens of kilograms of a heavy element medium (germanium crystals in the case of MAJORANA). Future detectors could be built at ton scale, and it is important to know that such an experiment would be sensitive enough to see neutrinoless double beta decay if it exists.

The team’s calculations of double beta decay on Titan provide the kind of theoretical support experimentalists need to develop experiments and analyze data.

But proton-proton fusion and neutrinoless double beta decay are only two nuclear processes of many that can be gateways to new discoveries in physics.

With next-generation systems like the OLCF’s Summit supercomputer, which will come online later this year, these calculations will be taken to a new level of accuracy, and researchers can begin to study the decays and interactions of more complex nuclei.

“Now that we’ve shown that we can control these few nucleon processes, we can start calculating more complicated processes,” Detmold said.

This research was conducted by the Nuclear Physics with Lattice Quantum Chromo Dynamics, or NPLQCD, collaboration, with team members at MIT, University of Washington, University of California, City College of New York, City University of New York, College of William and Mary, Brookhaven National Laboratory, Jefferson Laboratory, and the Institute for Nuclear Theory.

Related Publications:

Savage, P. Shanahan, B. Tiburzi, M. Wagman, F. Winter, S. Beane, E. Chang, Z. Davoudi, W. Detmold, and K. Orginos, “Proton-Proton Fusion and Tritium β Decay from Lattice Quantum Chromodynamics.” Physical Review Letters 119 (2017), doi: 10.1103/PhysRevLett.119.062002.

Shanahan, B. Tiburzi, M. Wagman, F. Winter, E. Chang, Z. Davoudi, W. Detmold, K. Orginos, and M. Savage,” Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology.” Physical Review Letters 119 (2017), doi: 10.1103/PhysRevLett.119.062003.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit

  • Filters

  • × Clear Filters

Sunlight Stimulates Microbial Respiration of Carbon in Surface Waters

This research offers new information to understand the role of microorganisms in elemental cycling in the Arctic.

Pulling Needles Out of Haystacks: With Computation, Researchers Identify Promising Solid Oxide Fuel Cell Materials

Using advanced computational methods, University of Wisconsin-Madison materials scientists have discovered new materials that could bring widespread commercial use of solid oxide fuel cells closer to reality.

Imaging Individual Flexible DNA 'Building Blocks' in 3-D

A team of researchers from Lawrence Berkeley National Lab (Berkeley Lab) and Ohio State University have generated 3-D images from 129 individual molecules of flexible DNA origami particles. Their work provides the first experimental verification of the theoretical model of DNA origami.

Remembering Really Fast

Colossal magnetoresistance at terahertz frequencies in thin composites boosts novel memory devices operated at extremely high speed.

In a First, Tiny Diamond Anvils Trigger Chemical Reactions by Squeezing

Menlo Park, Calif. --Scientists have turned the smallest possible bits of diamond and other super-hard specks into "molecular anvils" that squeeze and twist molecules until chemical bonds break and atoms exchange electrons. These are the first such chemical reactions triggered by mechanical pressure alone, and researchers say the method offers a new way to do chemistry at the molecular level that is greener, more efficient and much more precise.

Berkeley Lab "Minimalist Machine Learning" Algorithms Analyze Images From Very Little Data

Berkeley Lab mathematicians have developed a new approach to machine learning aimed at experimental imaging data. Rather than relying on the tens or hundreds of thousands of images used by typical machine learning methods, this new approach "learns" much more quickly and requires far fewer images.

Tuning Quantum Light Sources

First known material capable of emitting single photons at room temperature and telecom wavelengths.

Working Night and Day

Day-night changes in light and temperature power a low-cost material assembly that mimics biological self-copying.

Squeezing Into the Best Shape

Gel uses nanoparticles for on-demand control of droplet shapes, of interest for energy storage and catalysis.

Forcing the Hand of Elusive Electrons

Current generated when light hits a material reveals electrons behaving like an elusive particle.

  • Filters

  • × Clear Filters

ORNL Wins Four FLC Technology Transfer Awards

Four technologies developed at the Department of Energy's Oak Ridge National Laboratory have earned 2018 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC).

Pacific Northwest National Laboratory, OHSU Create Joint Research Co-Laboratory to Advance Precision Medicine

News Release PORTLAND, Ore. -- Pacific Northwest National Laboratory and OHSU today announced a joint collaboration to improve patient care by focusing research on highly complex sets of biomedical data, and the tools to interpret them.The OHSU-PNNL Precision Medicine Innovation Co-Laboratory, called PMedIC, will provide a comprehensive ecosystem for scientists to utilize integrated 'omics, data science and imaging technologies in their research in order to advance precision medicine -- an approach to disease treatment that takes into account individual variability in genes, environment and lifestyle for each person.

The Mysteries of Plasma and Solar Eruptions Earn PPPL Graduate an Astrophysics Prize

Article describes dissertation award for graduate of Princeton University Department of Astrophysical Sciences.

45-Year-Old Telescope Gets a Makeover to Demystify Dark Energy

Forty-five years ago this month, a telescope tucked inside a 14-story, 500-ton dome atop a mile-high peak in Arizona took in the night sky for the first time and recorded its observations on glass photographic plates. Today, the dome closes on the previous science chapters of the 4-meter Nicholas U. Mayall Telescope and starts preparing for its new role in creating the largest 3-D map of the universe. This map could help determine why the universe is expanding at faster and faster rates, driven by an unknown force called dark energy.

MSU Uses $3 Million NASA Grant to Find Better Ways to Regulate Dams

Michigan State University researchers, equipped with $3 million from NASA, will investigate innovative methods to improve dams so that they are less harmful to people and the environment.

Harker School Wins Second Consecutive SLAC Regional DOE Science Bowl

Twenty-four teams from 16 Bay Area high schools faced off Feb. 3 in the SLAC Regional DOE Science Bowl, a series of fast-paced question-and-answer matches that test knowledge in biology, chemistry, physics, earth and space sciences, energy and math. The competition is hosted annually by the Department of Energy's SLAC National Accelerator Laboratory.

David Asner Named Deputy Associate Laboratory Director and Head of the Instrumentation Division in Brookhaven Lab's Nuclear and Particle Physics Directorate

A particle physicist with extensive leadership and management experience, Asner will help expand a portfolio of physics programs and oversee instrumentation research and development.

UIC to Provide Energy-Saving 'Kits' with $3.1m in Funding From ComEd

The University of Illinois at Chicago's Energy Resources Center has received funding from ComEd to provide energy-efficient LED light bulbs, advanced power strips, and educational material to income-qualified participants in northern Illinois.As part of a $3.1 million year-long investment, the utility company will fund the Low Income Kit Energy (LIKE) program, allowing engineers at UIC's Energy Resources Center to provide energy-saving kits to 35,000 eligible individuals and/or families.

DOE's HPC4Manufacturing Program Seeks Industry Proposals

The Department of Energy (DOE) on Feb. 1 announced up to $3 million will be made available to U.S. manufacturers for public/private projects aimed at applying high performance computing to industry challenges for the advancement of energy innovation.

Elke-Caroline Aschenauer Awarded Prestigious Humboldt Research Award

UPTON, NY -- Elke-Caroline Aschenauer, a senior physicist at the U.S. Department of Energy's Brookhaven National Laboratory, has been awarded a Humboldt Research Award for her contributions to the field of experimental nuclear physics. This prestigious international award--issued by the Alexander von Humboldt Foundation in Bonn, Germany--comes with a prize of EUR60,000 (more than $70,000 U.

  • Filters

  • × Clear Filters

Sunlight Stimulates Microbial Respiration of Carbon in Surface Waters

This research offers new information to understand the role of microorganisms in elemental cycling in the Arctic.

Defects and Surface Reactions Boost Batteries

Defect-enhanced transport and complex phase growth are changing design rules for lithium-ion batteries.

Remembering Really Fast

Colossal magnetoresistance at terahertz frequencies in thin composites boosts novel memory devices operated at extremely high speed.

Tuning Quantum Light Sources

First known material capable of emitting single photons at room temperature and telecom wavelengths.

Working Night and Day

Day-night changes in light and temperature power a low-cost material assembly that mimics biological self-copying.

A Nanowire Array to Screen Drugs for Neurodegenerative Diseases

Engineers develop wires that penetrate neurons and measure their activity

Squeezing Into the Best Shape

Gel uses nanoparticles for on-demand control of droplet shapes, of interest for energy storage and catalysis.

Forcing the Hand of Elusive Electrons

Current generated when light hits a material reveals electrons behaving like an elusive particle.

Single Atoms in Nano-Cages

Tiny cages can trap and release inert argon gas atoms, allowing their further study and providing a new way to capture rare gases.

Unwavering Juggler with Three Extra Electrons

Simulations discovered the first molecule with three extra electrons and extraordinary stability.


Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Showing results

0-4 Of 2215